cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A319451 Numbers that are congruent to {0, 3, 6} mod 12; a(n) = 3*floor(4*n/3).

Original entry on oeis.org

0, 3, 6, 12, 15, 18, 24, 27, 30, 36, 39, 42, 48, 51, 54, 60, 63, 66, 72, 75, 78, 84, 87, 90, 96, 99, 102, 108, 111, 114, 120, 123, 126, 132, 135, 138, 144, 147, 150, 156, 159, 162, 168, 171, 174, 180, 183, 186, 192, 195, 198, 204, 207, 210, 216, 219, 222, 228
Offset: 0

Views

Author

Jianing Song, Sep 19 2018

Keywords

Comments

Key-numbers of the pitches of a diminished chord on a standard chromatic keyboard, with root = 0.

Crossrefs

A guide for some sequences related to modes and chords:
Modes:
Lydian mode (F): A083089
Ionian mode (C): A083026
Mixolydian mode (G): A083120
Dorian mode (D): A083033
Aeolian mode (A): A060107 (raised seventh: A083028)
Phrygian mode (E): A083034
Locrian mode (B): A082977
Third chords:
Major chord (F,C,G): A083030
Minor chord (D,A,E): A083031
Diminished chord (B): this sequence
Seventh chords:
Major seventh chord (F,C): A319280
Dominant seventh chord (G): A083032
Minor seventh chord (D,A,E): A319279
Half-diminished seventh chord (B): A319452

Programs

  • GAP
    Filtered([0..230],n->n mod 12 = 0 or n mod 12 = 3 or n mod 12 = 6); # Muniru A Asiru, Oct 24 2018
    
  • Magma
    [n : n in [0..150] | n mod 12 in [0, 3, 6]]
    
  • Maple
    seq(3*floor(4*n/3),n=0..60); # Muniru A Asiru, Oct 24 2018
  • Mathematica
    Select[Range[0, 200], MemberQ[{0, 3, 6}, Mod[#, 12]]&]
    LinearRecurrence[{1, 0, 1, -1}, {0, 3, 6, 12}, 100]
    Table[4n-1+Sin[Pi/3(2n+1)]/Sin[Pi/3],{n,0,99}] (* Federico Provvedi, Oct 23 2018 *)
  • PARI
    a(n)=3*(4*n\3)
    
  • Python
    for n in range(0,60): print(3*int(4*n/3), end=", ") # Stefano Spezia, Dec 07 2018

Formula

a(n) = a(n-3) + 12 for n > 2.
a(n) = a(n-1) + a(n-3) - a(n-4) for n > 3.
G.f.: 3*(1 + x + 2*x^2)/((1 - x)*(1 - x^3)).
a(n) = 3*A004773(n) = 3*(floor(n/3) + n).
a(n) = 4*n - 1 + sin((Pi/3)*(2*n + 1))/sin(Pi/3). - Federico Provvedi, Oct 23 2018
E.g.f.: (3*cos(sqrt(3)*x/2) + sqrt(3)*sin(sqrt(3)*x/2))/(3*exp(x/2)) - exp(x)*(1 - 4*x). - Franck Maminirina Ramaharo, Nov 27 2018
Sum_{n>=2} (-1)^n/a(n) = (sqrt(2)-1)*Pi/24 + (2-sqrt(2))*log(2)/24 + sqrt(2)*log(2+sqrt(2))/12. - Amiram Eldar, Dec 30 2021

A319279 Numbers that are congruent to {0, 3, 7, 10} mod 12.

Original entry on oeis.org

0, 3, 7, 10, 12, 15, 19, 22, 24, 27, 31, 34, 36, 39, 43, 46, 48, 51, 55, 58, 60, 63, 67, 70, 72, 75, 79, 82, 84, 87, 91, 94, 96, 99, 103, 106, 108, 111, 115, 118, 120, 123, 127, 130, 132, 135, 139, 142, 144, 147, 151, 154, 156, 159, 163, 166, 168, 171, 175, 178
Offset: 1

Views

Author

Jianing Song, Sep 16 2018

Keywords

Comments

Key-numbers of the pitches of a minor seventh chord on a standard chromatic keyboard, with root = 0.
Apart from the offset the same as A013574. - R. J. Mathar, Sep 27 2018

Crossrefs

A guide for some sequences related to modes and chords:
Modes:
Lydian mode (F): A083089
Ionian mode (C): A083026
Mixolydian mode (G): A083120
Dorian mode (D): A083033
Aeolian mode (A): A060107 (raised seventh: A083028)
Phrygian mode (E): A083034
Locrian mode (B): A082977
Third chords:
Major chord (F,C,G): A083030
Minor chord (D,A,E): A083031
Diminished chord (B): A319451
Seventh chords:
Major seventh chord (F,C): A319280
Dominant seventh chord (G): A083032
Minor seventh chord (D,A,E): this sequence
Half-diminished seventh chord (B): A319452

Programs

  • Magma
    [n : n in [0..150] | n mod 12 in [0, 3, 7, 10]]
    
  • Mathematica
    Select[Range[0, 200], MemberQ[{0, 3, 7, 10}, Mod[#, 12]]&]
    LinearRecurrence[{1, 0, 0, 1, -1}, {0, 3, 7, 10, 12}, 100]
  • PARI
    x='x+O('x^99); concat(0, Vec(x^2*(3+x+2*x^2)/((x^2+1)*(x-1)^2)))

Formula

a(n) = a(n-4) + 12 for n > 4.
a(n) = a(n-1) + a(n-4) - a(n-5) for n > 5.
G.f.: x^2*(3 + x + 2*x^2)/((x^2 + 1)*(x - 1)^2).
a(n) = (6*n - 5 + sqrt(2)*cos(Pi*n/2 + Pi/4))/2.
E.g.f.: ((6x - 5)*e^x + sqrt(2)*cos(x + Pi/4) + 4)/2.

A319280 Numbers that are congruent to {0, 4, 7, 11} mod 12.

Original entry on oeis.org

0, 4, 7, 11, 12, 16, 19, 23, 24, 28, 31, 35, 36, 40, 43, 47, 48, 52, 55, 59, 60, 64, 67, 71, 72, 76, 79, 83, 84, 88, 91, 95, 96, 100, 103, 107, 108, 112, 115, 119, 120, 124, 127, 131, 132, 136, 139, 143, 144, 148, 151, 155, 156, 160, 163, 167, 168, 172, 175, 179
Offset: 1

Views

Author

Jianing Song, Sep 16 2018

Keywords

Comments

Key-numbers of the pitches of a major seventh chord on a standard chromatic keyboard, with root = 0.

Crossrefs

A guide for some sequences related to modes and chords:
Modes:
Lydian mode (F): A083089
Ionian mode (C): A083026
Mixolydian mode (G): A083120
Dorian mode (D): A083033
Aeolian mode (A): A060107 (raised seventh: A083028)
Phrygian mode (E): A083034
Locrian mode (B): A082977
Third chords:
Major chord (F,C,G): A083030
Minor chord (D,A,E): A083031
Diminished chord (B): A319451
Seventh chords:
Major seventh chord (F,C): this sequence
Dominant seventh chord (G): A083032
Minor seventh chord (D,A,E): A319279
Half-diminished seventh chord (B): A319452

Programs

  • Magma
    [n : n in [0..150] | n mod 12 in [0, 4, 7, 11]];
    
  • Mathematica
    Select[Range[0, 200], MemberQ[{0, 4, 7, 11}, Mod[#, 12]]&]
    LinearRecurrence[{1, 0, 0, 1, -1}, {0, 4, 7, 11, 12}, 100]
  • PARI
    my(x='x+O('x^99)); concat(0, Vec(x^2*(4+3*x+4*x^2+x^3)/((1+x)*(1+x^2)*(1-x)^2)))

Formula

a(n) = a(n-4) + 12 for n > 4.
a(n) = a(n-1) + a(n-4) - a(n-5) for n > 5.
G.f.: x^2*(4 + 3*x + 4*x^2 + x^3)/((1 + x)*(1 + x^2)*(1 - x)^2).
a(n) = (6*n - 4 + (-1)^n + sqrt(2)*cos(Pi*n/2 + Pi/4))/2.
E.g.f.: ((6*x - 3)*cosh(x) + (6*x - 5)*sinh(x) + sqrt(2)*cos(x + Pi/4) + 2)/2.
Sum_{n>=2} (-1)^n/a(n) = log(3)/8 + log(2+sqrt(3))/(2*sqrt(3)) - 5*sqrt(3)*Pi/72. - Amiram Eldar, Dec 30 2021

A319452 Numbers that are congruent to {0, 3, 6, 10} mod 12.

Original entry on oeis.org

0, 3, 6, 10, 12, 15, 18, 22, 24, 27, 30, 34, 36, 39, 42, 46, 48, 51, 54, 58, 60, 63, 66, 70, 72, 75, 78, 82, 84, 87, 90, 94, 96, 99, 102, 106, 108, 111, 114, 118, 120, 123, 126, 130, 132, 135, 138, 142, 144, 147, 150, 154, 156, 159, 162, 166, 168, 171, 174, 178
Offset: 1

Views

Author

Jianing Song, Sep 19 2018

Keywords

Comments

Key-numbers of the pitches of a half-diminished chord on a standard chromatic keyboard, with root = 0.

Crossrefs

A guide for some sequences related to modes and chords:
Modes:
Lydian mode (F): A083089
Ionian mode (C): A083026
Mixolydian mode (G): A083120
Dorian mode (D): A083033
Aeolian mode (A): A060107 (raised seventh: A083028)
Phrygian mode (E): A083034
Locrian mode (B): A082977
Third chords:
Major chord (F,C,G): A083030
Minor chord (D,A,E): A083031
Diminished chord (B): A319451
Seventh chords:
Major seventh chord (F,C): A319280
Dominant seventh chord (G): A083032
Minor seventh chord (D,A,E): A319279
Half-diminished seventh chord (B): this sequence

Programs

  • Magma
    [n : n in [0..150] | n mod 12 in [0, 3, 6, 10]]
    
  • Mathematica
    Select[Range[0, 200], MemberQ[{0, 3, 6, 10}, Mod[#, 12]]&]
    LinearRecurrence[{1, 0, 0, 1, -1}, {0, 3, 6, 10, 12}, 100]
  • PARI
    my(x='x+O('x^99)); concat(0, Vec(x^2*(3+3*x+4*x^2+2*x^3)/((1+x)*(1+x^2)*(1-x)^2)))

Formula

a(n) = a(n-4) + 12 for n > 4.
a(n) = a(n-1) + a(n-4) - a(n-5) for n > 5.
G.f.: x^2*(3 + 3*x + 4*x^2 + 2*x^3)/((1 + x)*(1 + x^2)*(1 - x)^2).
a(n) = (12*n - 11 + (-1)^n + 2*cos(Pi*n/2))/4.
E.g.f.: ((6*x - 5)*cosh(x) + (6*x - 6)*sinh(x) + cos(x) + 4)/2.
Sum_{n>=2} (-1)^n/a(n) = log(12)/8 - (sqrt(3)-1)*Pi/24. - Amiram Eldar, Dec 30 2021

A291454 Number of half tones between successive pitches in a major scale.

Original entry on oeis.org

2, 2, 1, 2, 2, 2, 1, 2, 2, 1, 2, 2, 2, 1, 2, 2, 1, 2, 2, 2, 1, 2, 2, 1, 2, 2, 2, 1, 2, 2, 1, 2, 2, 2, 1, 2, 2, 1, 2, 2, 2, 1, 2, 2, 1, 2, 2, 2, 1, 2, 2, 1, 2, 2, 2, 1, 2, 2, 1, 2, 2, 2, 1, 2, 2, 1, 2, 2, 2, 1, 2, 2, 1, 2, 2, 2, 1, 2, 2, 1, 2, 2, 2, 1, 2, 2, 1, 2, 2, 2, 1, 2, 2, 1, 2, 2, 2, 1, 2, 2, 1, 2, 2, 2, 1
Offset: 1

Views

Author

Halfdan Skjerning, Aug 24 2017

Keywords

Comments

In music theory the repeating sequence '2,2,1,2,2,2,1' is the number of steps of half tones in pitch between the tones of a major scale. Starting at, for example, the tone 'C' that is the first tone of the C major scale, 2 half tones up leads to 'D', which is the second tone in the scale. The scale then is: C,D,E,F,G,A,B and C. Starting at another term in the sequence will produce a different scale; for example, '2,1,2,2,1,2,2' will produce a minor scale.
From Robert G. Wilson v, Aug 25 2017: (Start)
First forward difference of A083026.
Decimal expansion of 737407/3333333. (End)

Crossrefs

Programs

  • Magma
    [12*(n+1) div 7 - 12*n div 7:  n in [1..80]]; // Vincenzo Librandi, Oct 21 2018
  • Maple
    a:=proc(n) floor(12*(n+1)/7-floor(12*n/7)) end: seq(a(n),n=1..110); # Muniru A Asiru, Oct 19 2018
  • Mathematica
    Table[{2, 2, 1, 2, 2, 2, 1}, 15] // Flatten  (* Robert G. Wilson v, Aug 25 2017 *)
    Table[Floor[12/7 (k + 1)] - Floor[12/7 k], {k, 1, 100}] (* Federico Provvedi,Oct 18 2018 *)
  • PARI
    a(n)=[1,2,2,1,2,2,2][n%7+1] \\ Charles R Greathouse IV, Aug 26 2017
    

Formula

a(n) = floor(12*(n+1)/7) - floor(12*n/7). - Federico Provvedi, Oct 18 2018
Dirichlet g.f.: 2*zeta(s) - 7^(-s)*(zeta(s,3/7) + zeta(s)). - Federico Provvedi, Aug 27 2021

A175884 Numbers that are congruent to {0, 2, 4, 7, 9} mod 12.

Original entry on oeis.org

0, 2, 4, 7, 9, 12, 14, 16, 19, 21, 24, 26, 28, 31, 33, 36, 38, 40, 43, 45, 48, 50, 52, 55, 57, 60, 62, 64, 67, 69, 72, 74, 76, 79, 81, 84, 86, 88, 91, 93, 96, 98, 100, 103, 105, 108, 110, 112, 115, 117, 120, 122, 124, 127, 129, 132, 134, 136, 139, 141, 144, 146, 148, 151
Offset: 1

Views

Author

Bill Shillito (DMAshura(AT)gmail.com), Oct 08 2010

Keywords

Comments

Key-numbers of the pitches of a major pentatonic scale on a standard chromatic keyboard, with root = 0.
The pentatonic scale can also be obtained by omitting the 4th and 7th notes from the diatonic scale, so a(n) = A083026(A032796(n)). - Federico Provvedi, Sep 10 2022

Crossrefs

Subset of A083026 with exact index A032796.

Programs

  • GAP
    Filtered([0..151],n->n mod 12 = 0 or n mod 12 = 2 or n mod 12 = 4 or n mod 12 = 7 or n mod 12 = 9); # Muniru A Asiru, Oct 24 2018
  • Magma
    [Floor(12*(n-1)/5): n in [1..100]]; // G. C. Greubel, Oct 23 2018
    
  • Maple
    seq(floor(12*(n-1)/5),n=1..65); # Muniru A Asiru, Oct 24 2018
  • Mathematica
    fQ[n_] := MemberQ[{0, 2, 4, 7, 9}, Mod[n, 12]]; Select[ Range[0, 152], fQ] (* Robert G. Wilson v, Oct 09 2010 *)
    Table[2n-1+Floor[(n-4)/5]+Floor[(n-1)/5],{n, 100}] (* Federico Provvedi, Jan 13 2018 *)
    Quotient[12(Range[100]-1), 5] (* Federico Provvedi, Oct 19 2018 *)
  • PARI
    a(n)=([0,1,0,0,0,0; 0,0,1,0,0,0; 0,0,0,1,0,0; 0,0,0,0,1,0; 0,0,0,0,0,1; -1,1,0,0,0,1]^n*[0;2;4;7;9;12])[1,1] \\ for offset 0; Charles R Greathouse IV, Jul 06 2017
    
  • PARI
    vector(100, n, floor(12*(n-1)/5)) \\ G. C. Greubel, Oct 23 2018
    

Formula

G.f.: x^2*(2 + 2*x + 3*x^2 + 2*x^3 + 3*x^4) / ((x^4 + x^3 + x^2 + x + 1)*(x-1)^2). - R. J. Mathar, Jul 10 2015
a(n) = 2*n - 1 + floor((n-4)/5) + floor((n-1)/5). - Federico Provvedi, Jan 13 2018
a(n) = floor(12*(n-1)/5). - Federico Provvedi, Oct 19 2018
a(n) = A005843(n) + A057354(n). - Federico Provvedi, Sep 10 2022

Extensions

Offset change by G. C. Greubel, Oct 23 2018

A371902 Positive integers whose binary form follows the periodic pattern 1101110: the concatenation of halftones 2 2 1 2 2 2 1, diminished by one, between successive pitches in the Ionian Major Scale.

Original entry on oeis.org

1, 3, 6, 13, 27, 55, 110, 221, 443, 886, 1773, 3547, 7095, 14190, 28381, 56763, 113526, 227053, 454107, 908215, 1816430, 3632861, 7265723, 14531446, 29062893, 58125787, 116251575, 232503150, 465006301, 930012603, 1860025206, 3720050413
Offset: 1

Views

Author

Federico Provvedi, Apr 13 2024

Keywords

Comments

The periodic binary digits of 55/107 is the pattern sequence A291454(n)-1 which is the new bit introduced into a(n): a(n+1) = 2*a(n) + A291454(n) - 1.

Examples

			For n=10, playing 10 + 1 = 11 notes of the major scale (in Ionian mode), the 10 intervals between the pitches C D E F G A B C' D' E' F' expressed in halftones are 2, 2, 1, 2, 2, 2, 1, 2, 2, 1, whose values diminished by one give the binary form '1101110110', which in decimal is 886, hence a(10) = 886.
		

Crossrefs

Programs

  • Mathematica
    Floor[110/127*2^Range[50]] (* Paolo Xausa, Jun 21 2024 *)

Formula

a(n) = floor((110/127)*2^n).
D.g.f.: z^2*(z^5 + z^4 + z^2 + z + 1)/((2 - z) (1 - z^7)) = z * Dgf(A000225) * Dgf(A234046).
G.f.: x*(1 + x + x^3 + x^4 + x^5)/((1 - 2*x)*(1 - x^7)). - Stefano Spezia, May 04 2024
Previous Showing 11-17 of 17 results.