cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A140944 Triangle T(n,k) read by rows, the k-th term of the n-th differences of the Jacobsthal sequence A001045.

Original entry on oeis.org

0, 1, 0, -1, 2, 0, 3, -2, 4, 0, -5, 6, -4, 8, 0, 11, -10, 12, -8, 16, 0, -21, 22, -20, 24, -16, 32, 0, 43, -42, 44, -40, 48, -32, 64, 0, -85, 86, -84, 88, -80, 96, -64, 128, 0, 171, -170, 172, -168, 176, -160, 192, -128, 256, 0, -341, 342, -340, 344, -336, 352, -320, 384, -256, 512, 0
Offset: 0

Views

Author

Paul Curtz, Jul 24 2008

Keywords

Comments

A variant of the triangle A140503, now including the diagonal.
Since the diagonal contains zeros, rows sums are those of A140503.

Examples

			Triangle begins as:
    0;
    1,   0;
   -1,   2,   0;
    3,  -2,   4,  0;
   -5,   6,  -4,  8,   0;
   11, -10,  12, -8,  16,  0;
  -21,  22, -20, 24, -16, 32,  0;
		

Crossrefs

Programs

  • Magma
    [2^k*(1-(-2)^(n-k))/3: k in [0..n], n in [0..15]]; // G. C. Greubel, Feb 18 2023
    
  • Maple
    A001045:= n -> (2^n-(-1)^n)/3;
    A140944:= proc(n,k) if n = 0 then A001045(k); else procname(n-1,k+1)-procname(n-1,k) ; fi; end:
    seq(seq(A140944(n,k),k=0..n),n=0..10); # R. J. Mathar, Sep 07 2009
  • Mathematica
    T[0, 0]=0; T[1, 0]= T[0, 1]= 1; T[0, k_]:= T[0, k]= T[0, k-1] + 2*T[0, k-2]; T[n_, n_]=0; T[n_, k_]:= T[n, k] = T[n-1, k+1] - T[n-1, k]; Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* Jean-François Alcover, Dec 17 2014 *)
    Table[2^k*(1-(-2)^(n-k))/3, {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 18 2023 *)
  • PARI
    T(n, k) = (2^k - 2^n*(-1)^(n+k))/3 \\ Jianing Song, Aug 11 2022
    
  • SageMath
    def A140944(n,k): return 2^k*(1 - (-2)^(n-k))/3
    flatten([[A140944(n,k) for k in range(n+1)] for n in range(16)]) # G. C. Greubel, Feb 18 2023

Formula

T(n, k) = T(n-1, k+1) - T(n-1, k). T(0, k) = A001045(k).
T(n, k) = (2^k - 2^n*(-1)^(n+k))/3, for n >= k >= 0. - Jianing Song, Aug 11 2022
From G. C. Greubel, Feb 18 2023: (Start)
T(n, n-1) = A000079(n).
T(2*n, n) = (-1)^(n+1)*A192382(n+1).
T(2*n, n-1) = (-1)^n*A246036(n-1).
T(2*n, n+1) = A083086(n).
T(3*n, n) = -A115489(n).
Sum_{k=0..n} T(n, k) = A052992(n)*[n>0] + 0*[n=0].
Sum_{k=0..n} (-1)^k*T(n, k) = A045883(n).
Sum_{k=0..n} 2^k*T(n, k) = A084175(n).
Sum_{k=0..n} (-2)^k*T(n, k) = (-1)^(n+1)*A109765(n).
Sum_{k=0..n} 3^k*T(n, k) = A091056(n+1).
Sum_{k=0..floor(n/2)} T(n-k, k) = (-1)^(n+1)*A097038(n).
Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = (-1)^(n+1)*A138495(n). (End)

Extensions

Edited and extended by R. J. Mathar, Sep 07 2009

A084177 Binomial transform of Jacobsthal oblongs.

Original entry on oeis.org

0, 1, 5, 27, 137, 691, 3465, 17347, 86777, 433971, 2170025, 10850467, 54253017, 271266451, 1356334985, 6781680387, 33908412857, 169542086131, 847710474345, 4238552459107, 21192762470297, 105963812701011, 529819064204105
Offset: 0

Views

Author

Paul Barry, May 18 2003

Keywords

Comments

Binomial transform of A084175.

Crossrefs

Cf. A001045.

Programs

Formula

a(n) = (2*5^n - (-1)^n - 2^n)/9.
G.f.: x*(1-x)/((1+x)*(1-2*x)*(1-5*x)).
a(n) = 6*a(n-1) - 3*a(n-2) - 10*a(n-3).
E.g.f.: (2*exp(5*x) - exp(2*x) - exp(-x))/9.

A128210 Number triangle T(n,k) = (-1)^(n-k)*[k<=n]*Product_{i=k+1..n} Sum_{j=0..i-1} A078008(j-1).

Original entry on oeis.org

1, -1, 1, 1, -1, 1, -3, 3, -3, 1, 15, -15, 15, -5, 1, -165, 165, -165, 55, -11, 1, 3465, -3465, 3465, -1155, 231, -21, 1, -148995, 148995, -148995, 49665, -9933, 903, -43, 1, 12664575, -12664575, 12664575
Offset: 0

Views

Author

Paul Barry, Feb 19 2007

Keywords

Comments

Inverse is A128208. Subdiagonals include -A001045(n+1) and A084175(n+1).

Examples

			Triangle begins:
        1;
       -1,      1;
        1,     -1,       1;
       -3,      3,      -3,     1;
       15,    -15,      15,    -5,     1;
     -165,    165,    -165,    55,   -11,   1;
     3465,  -3465,    3465, -1155,   231, -21,   1;
  -148995, 148995, -148995, 49665, -9933, 903, -43, 1;
  ...
		

A334908 Area/6 of primitive Pythagorean triangles generated by {{2, 0}, {1, -1}}^n * {{2}, {1}}, for n >= 0.

Original entry on oeis.org

1, 10, 220, 3080, 52976, 818720, 13333440, 211474560, 3398520576, 54257082880, 869067996160, 13897453373440, 222420341682176, 3558236809994240, 56935698394234880, 910939899548958720, 14575288593717067776, 233202615903456460800
Offset: 0

Views

Author

Ralf Steiner, May 16 2020

Keywords

Comments

Matrix {{2, 0}, {1, -1}} is [g_{-2}] given by Firstov in eq. (24).
These primitive Pythagorean triples are also given by Lee Price as (M_2)^n (3,4,5)^T (T for transposed), with M_2 = {{2, 1, 1}, {2, -2, 2}, {2, -1, 3}}.
For a primitive Pythagorean triangle (x, y, z) = (u^2-v^2, 2*u*v, u^2+v^2) the area is A = x*y/2 = u*v*(u^2 - v^2) = z*h/2 with altitude h, and h is an irreducible fraction. Here:
x(n) = A084175(n+2).
y(n) = 4*(A084175(n+1) - A084175(n)) = A054881(n+2).
= 2*A192382(n+1) = 4*A003683(n+1).
z(n) = A084175(n+2) + 2*A084175(n+1) - 4*A084175(n).
= A108924(n+2)/2 = A084175(n+2) + 2*A139818(n+1).
= A000302(n+1) + A139818(n+1).
u(n) = A000079(n+1) = 2^(n+1).
v(n) = A001045(n+1) = (2^(n+1) + (-1)^n)/3.
For the area A(n): Limit_{n -> oo} (3^3/(2^(4*n+7)))*A(n) = 1. See the formula section. - Wolfdieter Lang, Jun 14 2020

Examples

			a(0) = 3*4/12 = 1 for the triangle (3, 4, 5).
		

Crossrefs

Programs

  • Magma
    [(2^(2*n+1)*(2^(2*n+5) -3) +(-2)^n*(3*2^(2*n+3) -1))/81: n in [0..40]]; // G. C. Greubel, Feb 18 2023
    
  • Mathematica
    Table[(2^(2*n+1)*(2^(2*n+5) -3) + (-2)^n*(3*2^(2*n+3) -1))/3^4, {n,0,40}]
  • SageMath
    [(2^(2*n+1)*(2^(2*n+5) -3) +(-2)^n*(3*2^(2*n+3) -1))/81 for n in range(41)] # G. C. Greubel, Feb 18 2023

Formula

a(n) = ( 2^(4*n+6) - 3*2^(2*n+1) - 3*(-2)^(3*n+3) - (-2)^n )/3^4.
G.f.: 1 / ((1 + 2*x)*(1 - 4*x)*(1 + 8*x)*(1 - 16*x)). - Colin Barker, Jun 11 2020
E.g.f.: (1/81)*(24*exp(-8*x) - exp(-2*x) - 6*exp(4*x) + 64*exp(16*x)). - G. C. Greubel, Feb 18 2023

A374098 a(n) = A112387(n)^2.

Original entry on oeis.org

1, 1, 4, 1, 16, 9, 64, 25, 256, 121, 1024, 441, 4096, 1849, 16384, 7225, 65536, 29241, 262144, 116281, 1048576, 466489, 4194304, 1863225, 16777216, 7458361, 67108864, 29822521, 268435456, 119311929, 1073741824, 477204025, 4294967296, 1908903481, 17179869184
Offset: 0

Views

Author

Paul Curtz, Jun 28 2024

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0, 3, 0, 6, 0, -8}, {1, 1, 4, 1, 16, 9}, 35] (* Amiram Eldar, Jul 01 2024 *)

Formula

a(2*n) = A000302(n); a(2*n+1) = A139818(n+1).
(a(2*n) + a(2*n-1))^2 = A084175(n+1)^2 + 16*A003683(n)^2, for n >= 1. - Thomas Scheuerle, Jun 28 2024
G.f. ( 1+x+x^2-2*x^3-2*x^4 ) / ( (x-1)*(2*x+1)*(2*x-1)*(1+x)*(2*x^2+1) ). - R. J. Mathar, Aug 02 2024

A378676 a(n) = J(n) * J(n+2) where J(n) = Jacobsthal(n) = A001045(n).

Original entry on oeis.org

0, 3, 5, 33, 105, 473, 1785, 7353, 28985, 116793, 465465, 1865273, 7454265, 29830713, 119295545, 477236793, 1908837945, 7635570233, 30541844025, 122168249913, 488671252025, 1954688503353, 7818747022905, 31275002072633, 125099980328505, 500399977238073, 2001599797104185, 8006399412112953, 32025597201059385
Offset: 0

Views

Author

Werner Schulte, Dec 03 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := (4^(n+1) - 5*(-2)^n + 1)/9; Array[a, 30, 0] (* Amiram Eldar, Dec 06 2024 *)
  • PARI
    a(n)=(4^(n+1)-5*(-2)^n+1)/9

Formula

a(n) = (2^n - (-1)^n) * (2^(n+2) - (-1)^n) / 9 = (4 * 4^n - 5 * (-2)^n + 1) / 9.
G.f.: x * (3 - 4*x) / ((1-x) * (1+2*x) * (1-4*x)).
a(n) = 3 * a(n-1) + 6 * a(n-2) - 8 * a(n-3) for n > 2 with initial values a(0) = 0, a(1) = 3, and a(2) = 5.
Sum_{k=1..n-1} 2^(k-1) / a(k) = 1 - 2^(n-1) / A084175(n) for n > 0.
Sum_{k>0} 2^(k-1) / a(k) = 1.
E.g.f.: exp(x)*(1 - cosh(3*x) + 9*sinh(3*x))/9. - Stefano Spezia, Dec 06 2024

A378931 Triangle read by rows, based on products of Jacobsthal numbers (A001045).

Original entry on oeis.org

1, -1, 3, -2, -9, 15, -4, -18, -25, 55, -8, -36, -50, -121, 231, -16, -72, -100, -242, -441, 903, -32, -144, -200, -484, -882, -1849, 3655, -64, -288, -400, -968, -1764, -3698, -7225, 14535, -128, -576, -800, -1936, -3528, -7396, -14450, -29241, 58311, -256, -1152, -1600, -3872, -7056, -14792, -28900, -58482, -116281, 232903
Offset: 1

Views

Author

Werner Schulte, Dec 11 2024

Keywords

Comments

Let M = T^(-1) be matrix inverse of T seen as a lower triangular matrix. M is a harmonic triangle with M(n, k) = 1 / A084175(n) if k = n, and 1 / A378676(k) if 1 <= k < n. Triangle M(n, k) for 1 <= k <= n starts:
1/1
1/3 1/3
1/3 1/5 1/15
1/3 1/5 1/33 1/55
1/3 1/5 1/33 1/105 1/231
1/3 1/5 1/33 1/105 1/473 1/903
etc.
Sum_{k=1..n} M(n, k) * 2^(k-1) = 1.
Sum_{k=1..n} M(n, k) * (-2)^(k-1) = (-1)^(n-1) / A001045(n+1).
Sum_{k=1..n} 2^(k-1) / M(n, k) = (8^n - 1) / 7 = A023001(n).

Examples

			Triangle T(n, k) for 1 <= k <= n starts:
n\k :     1     2     3      4      5      6       7       8      9
===================================================================
  1 :     1
  2 :    -1     3
  3 :    -2    -9    15
  4 :    -4   -18   -25     55
  5 :    -8   -36   -50   -121    231
  6 :   -16   -72  -100   -242   -441    903
  7 :   -32  -144  -200   -484   -882  -1849    3655
  8 :   -64  -288  -400   -968  -1764  -3698   -7225   14535
  9 :  -128  -576  -800  -1936  -3528  -7396  -14450  -29241  58311
  etc.
		

Crossrefs

A084175 (main diagonal), A139818 (1st subdiagonal), A000079 (column 1 and row sums).

Programs

  • Mathematica
    T[n_,k_]:=If[k==n, (2*4^n-(-2)^n-1)/9, -2^(n-1-k)*(2^(k+1)+(-1)^k)^2/9]; Table[T[n,k],{n,10},{k,n}]//Flatten (* Stefano Spezia, Dec 11 2024 *)
  • PARI
    T(n,k)=if(k==n,(2*4^n-(-2)^n-1)/9,-2^(n-1-k)*(2^(k+1)+(-1)^k)^2/9)

Formula

T(n, n) = (2 * 4^n - (-2)^n - 1) / 9 = A084175(n), and T(n, k) = -2^(n-1-k) * (2^(k+1) + (-1)^k)^2 / 9 for 1 <= k < n.
G.f.: x*t * (1 - 3*t - 6*x*t^2 + 8*x^2*t^3) / ((1 - 2*t) * (1 - x*t) * (1 + 2*x*t) * (1 - 4*x*t)).
Previous Showing 11-17 of 17 results.