A173078 a(n) = (5*2^n - 2*(-1)^n - 9)/3.
1, 3, 11, 23, 51, 103, 211, 423, 851, 1703, 3411, 6823, 13651, 27303, 54611, 109223, 218451, 436903, 873811, 1747623, 3495251, 6990503, 13981011, 27962023, 55924051, 111848103, 223696211, 447392423, 894784851, 1789569703, 3579139411
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (2,1,-2).
Programs
-
GAP
List([1..40], n-> (5*2^n - 2*(-1)^n - 9)/3); # G. C. Greubel, Dec 01 2019
-
Magma
[5*2^n/3-2*(-1)^n/3-3: n in [1..40]]; // Vincenzo Librandi, Aug 05 2011
-
Maple
seq( (5*2^n -2*(-1)^n -9)/3, n=1..40); # G. C. Greubel, Dec 01 2019
-
Mathematica
LinearRecurrence[{2,1,-2},{1,3,11},40] (* Harvey P. Dale, Oct 01 2018 *)
-
PARI
vector(40, n, (5*2^n - 2*(-1)^n - 9)/3) \\ G. C. Greubel, Dec 01 2019
-
Sage
[(5*2^n - 2*(-1)^n - 9)/3 for n in (1..40)] # G. C. Greubel, Dec 01 2019
Formula
a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3).
a(n+1) - 2*a(n) = A010686(n-1).
a(n) = A084214(n+1) - 3.
G.f.: x*(1 + x + 4*x^2) / ( (1-x)*(1-2*x)*(1+x) ).
a(2n+3) - a(2n+1) = 10*A000302(n).
E.g.f.: (-2*exp(-x) + 6 - 9*exp(x) + 5*exp(2*x))/3. - G. C. Greubel, Dec 01 2019
Comments