cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 45 results. Next

A258351 Expansion of Product_{k>=1} 1/(1-x^k)^(k*(k-1)*(k-2)).

Original entry on oeis.org

1, 0, 0, 6, 24, 60, 141, 354, 996, 2720, 7194, 18306, 46154, 115506, 288195, 713210, 1749732, 4253148, 10259302, 24573390, 58491312, 138371354, 325415727, 760899396, 1769420183, 4093054602, 9420739965, 21578842582, 49199229066, 111672215658, 252381169048
Offset: 0

Views

Author

Vaclav Kotesovec, May 27 2015

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=40; CoefficientList[Series[Product[1/(1-x^k)^(k*(k-1)*(k-2)),{k,1,nmax}],{x,0,nmax}],x]

Formula

a(n) ~ (3*Zeta(5))^(79/600) / (2^(21/200) * sqrt(5*Pi) * n^(379/600)) * exp(2*Zeta'(-1) + 3*Zeta(3)/(4*Pi^2) - Pi^16 / (518400000 * Zeta(5)^3) + Pi^8 * Zeta(3) / (36000 * Zeta(5)^2) - Zeta(3)^2 / (15*Zeta(5)) + Zeta'(-3) + (-Pi^12 / (1800000 * 2^(3/5) * 3^(1/5) * Zeta(5)^(11/5)) + Pi^4 * Zeta(3) / (150 * 2^(3/5) * 3^(1/5) * Zeta(5)^(6/5))) * n^(1/5) + (-Pi^8 / (12000 * 2^(1/5) * 3^(2/5) * Zeta(5)^(7/5)) + Zeta(3) / (2^(1/5) * (3*Zeta(5))^(2/5))) * n^(2/5) - Pi^4 / (30 * 2^(4/5) * (3*Zeta(5))^(3/5)) * n^(3/5) + 5 * (3*Zeta(5))^(1/5) / 2^(7/5) * n^(4/5)), where Zeta(3) = A002117, Zeta(5) = A013663, Zeta'(-1) = A084448 = 1/12 - log(A074962), Zeta'(-3) = ((gamma + log(2*Pi) - 11/6)/30 - 3*Zeta'(4)/Pi^4)/4.

A263030 Decimal expansion of a constant related to A262876 and A262946 (negated).

Original entry on oeis.org

1, 8, 8, 7, 0, 8, 1, 9, 1, 9, 7, 9, 5, 2, 8, 5, 3, 2, 3, 7, 6, 4, 1, 0, 0, 9, 8, 6, 4, 9, 2, 0, 7, 9, 7, 3, 5, 9, 2, 1, 1, 4, 4, 6, 7, 2, 6, 8, 4, 2, 9, 2, 2, 1, 5, 0, 9, 4, 1, 7, 4, 3, 3, 7, 8, 2, 3, 2, 3, 7, 2, 1, 3, 7, 1, 8, 0, 6, 7, 4, 7, 1, 3, 9, 4, 6, 9, 7, 4, 1, 6, 1, 8, 7, 0, 1, 6, 2, 5, 8, 3, 2, 8, 1, 7, 9
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 08 2015

Keywords

Examples

			-0.18870819197952853237641009864920797359211446726842922150941743378232...
		

Crossrefs

Programs

  • Mathematica
    NIntegrate[1/x*(Exp[-2*x]/(1 - Exp[-3*x])^2 - 1/(9*x^2) - 1/(9*x) + Exp[-x]/36), {x, 0, Infinity}, WorkingPrecision -> 120, MaxRecursion -> 100, PrecisionGoal -> 110]

Formula

Integral_{x=0..infinity} 1/x*(exp(-2*x)/(1 - exp(-3*x))^2 - 1/(9*x^2) - 1/(9*x) + exp(-x)/36) dx.
exp(3*(A263030+A263031)) = A^2 * Gamma(1/3) / (3^(11/12) * exp(1/6) * sqrt(2*Pi)), where A = A074962 is the Glaisher-Kinkelin constant.

A263031 Decimal expansion of a constant related to A262877 and A262947 (negated).

Original entry on oeis.org

0, 1, 4, 5, 3, 7, 4, 2, 9, 1, 8, 3, 2, 8, 4, 0, 3, 3, 6, 0, 5, 0, 2, 0, 2, 9, 4, 5, 0, 2, 2, 6, 2, 0, 9, 0, 3, 6, 0, 5, 4, 1, 4, 9, 7, 5, 9, 3, 4, 6, 4, 4, 4, 1, 3, 8, 1, 5, 2, 2, 4, 7, 4, 0, 5, 5, 3, 4, 6, 9, 2, 7, 4, 4, 9, 5, 5, 0, 0, 8, 3, 1, 2, 5, 9, 0, 7, 2, 3, 8, 9, 0, 1, 2, 7, 7, 0, 9, 8, 8, 3, 6, 0, 5, 4, 4
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 08 2015

Keywords

Examples

			-0.01453742918328403360502029450226209036054149759346444138152247405534...
		

Crossrefs

Programs

  • Mathematica
    NIntegrate[1/x*(Exp[-x]/(1 - Exp[-3*x])^2 - 1/(9*x^2) - 2/(9*x) - 5*Exp[-x]/36), {x, 0, Infinity}, WorkingPrecision -> 120, MaxRecursion -> 100, PrecisionGoal -> 110]

Formula

Integral_{x=0..infinity} 1/x*(exp(-x)/(1 - exp(-3*x))^2 - 1/(9*x^2) - 2/(9*x) - 5*exp(-x)/36) dx.
exp(3*(A263030+A263031)) = A^2 * Gamma(1/3) / (3^(11/12) * exp(1/6) * sqrt(2*Pi)), where A = A074962 is the Glaisher-Kinkelin constant.

A263358 Expansion of Product_{k>=1} 1/(1-x^(k+2))^k.

Original entry on oeis.org

1, 0, 0, 1, 2, 3, 5, 7, 12, 18, 29, 43, 69, 101, 155, 231, 347, 509, 759, 1106, 1626, 2359, 3428, 4938, 7127, 10194, 14587, 20756, 29498, 41716, 58932, 82888, 116413, 162924, 227602, 316988, 440696, 610953, 845469, 1167118, 1608178, 2210888, 3034124, 4155111
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 16 2015

Keywords

Comments

In general, if v>=0 and g.f. = Product_{k>=1} 1/(1-x^(k+v))^k, then a(n) ~ d1(v) * n^(v^2/6 - 25/36) * exp(-Pi^4 * v^2 / (432*Zeta(3)) + 3*Zeta(3)^(1/3) * n^(2/3)/2^(2/3) - v * Pi^2 * n^(1/3) / (3 * 2^(4/3) * Zeta(3)^(1/3))) / (sqrt(3*Pi) * 2^(v^2/6 + 11/36) * Zeta(3)^(v^2/6 - 7/36)), where Zeta(3) = A002117.
d1(v) = exp(Integral_{x=0..infinity} (1/(x*exp((v-1)*x) * (exp(x)-1)^2) - (6*v^2-1) / (12*x*exp(x)) + v/x^2 - 1/x^3) dx).
d1(v) = (exp(Zeta'(-1) - v*Zeta'(0))) / Product_{j=0..v-1} j!, where Zeta'(0) = -A075700, Zeta'(-1) = A084448 and Product_{j=0..v-1} j! = A000178(v-1).
d1(v) = exp(1/12) * (2*Pi)^(v/2) / (A * G(v+1)), where A = A074962 is the Glaisher-Kinkelin constant and G is the Barnes G-function.

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember; `if`(n=0, 1, add(add(d*
          max(0, d-2), d=divisors(j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..50);  # Alois P. Heinz, Oct 16 2015
  • Mathematica
    nmax = 50; CoefficientList[Series[Product[1/(1-x^(k+2))^k, {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 50; CoefficientList[Series[E^Sum[x^(3*k)/(k*(1-x^k)^2), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: exp(Sum_{k>=1} x^(3*k)/(k*(1-x^k)^2)).
a(n) ~ exp(1/12 - Pi^4/(108*Zeta(3)) - Pi^2 * n^(1/3) / (3 * 2^(1/3) * Zeta(3)^(1/3)) + 3 * 2^(-2/3) * Zeta(3)^(1/3) * n^(2/3)) * 2^(1/36) * sqrt(Pi) / (A * sqrt(3) * Zeta(3)^(17/36) * n^(1/36)), where Zeta(3) = A002117 and A = A074962 is the Glaisher-Kinkelin constant.

A263364 Expansion of Product_{k>=1} 1/(1-x^(k+8))^k.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 18, 23, 33, 43, 60, 77, 103, 130, 168, 209, 267, 331, 420, 526, 667, 839, 1069, 1347, 1711, 2160, 2733, 3437, 4336, 5435, 6828, 8543, 10699, 13357, 16703, 20820, 25986, 32362, 40327, 50152, 62407
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 16 2015

Keywords

Comments

In general, if v>=0 and g.f. = Product_{k>=1} 1/(1-x^(k+v))^k, then a(n) ~ d1(v) * n^(v^2/6 - 25/36) * exp(-Pi^4 * v^2 / (432*Zeta(3)) + 3*Zeta(3)^(1/3) * n^(2/3)/2^(2/3) - v * Pi^2 * n^(1/3) / (3 * 2^(4/3) * Zeta(3)^(1/3))) / (sqrt(3*Pi) * 2^(v^2/6 + 11/36) * Zeta(3)^(v^2/6 - 7/36)), where Zeta(3) = A002117.
d1(v) = exp(Integral_{x=0..infinity} (1/(x*exp((v-1)*x) * (exp(x)-1)^2) - (6*v^2-1) / (12*x*exp(x)) + v/x^2 - 1/x^3) dx).
d1(v) = (exp(Zeta'(-1) - v*Zeta'(0))) / Product_{j=0..v-1} j!, where Zeta'(0) = -A075700, Zeta'(-1) = A084448 and Product_{j=0..v-1} j! = A000178(v-1).
d1(v) = exp(1/12) * (2*Pi)^(v/2) / (A * G(v+1)), where A = A074962 is the Glaisher-Kinkelin constant and G is the Barnes G-function.

Crossrefs

Cf. A000219 (v=0), A052847 (v=1), A263358 (v=2), A263359 (v=3), A263360 (v=4), A263361 (v=5), A263362 (v=6), A263363 (v=7).

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember; `if`(n=0, 1, add(add(d*
          max(0, d-8), d=divisors(j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..60);  # Alois P. Heinz, Oct 16 2015
  • Mathematica
    nmax = 60; CoefficientList[Series[Product[1/(1-x^(k+8))^k, {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 60; CoefficientList[Series[E^Sum[x^(9*k)/(k*(1-x^k)^2), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: exp(Sum_{k>=1} x^(9*k)/(k*(1-x^k)^2)).
a(n) ~ exp(1/12 - 4*Pi^4/(27*Zeta(3)) - 2^(5/3) * Pi^2 * n^(1/3) / (3 * Zeta(3)^(1/3)) + 3 * 2^(-2/3) * Zeta(3)^(1/3) * n^(2/3)) * n^(359/36) * Pi^(7/2) / (8026324992000 * A * 2^(35/36) * sqrt(3) * Zeta(3)^(377/36)), where Zeta(3) = A002117 and A = A074962 is the Glaisher-Kinkelin constant.

A225746 Decimal expansion of the logarithm of Glaisher's constant.

Original entry on oeis.org

0, 2, 4, 8, 7, 5, 4, 4, 7, 7, 0, 3, 3, 7, 8, 4, 2, 6, 2, 5, 4, 7, 2, 5, 2, 9, 9, 3, 5, 7, 6, 1, 1, 3, 9, 7, 6, 0, 9, 7, 3, 6, 9, 7, 1, 3, 6, 6, 8, 5, 3, 5, 1, 1, 6, 9, 9, 9, 8, 5, 5, 6, 3, 9, 6, 9, 0, 6, 9, 3, 0, 3, 2, 9, 9, 9, 9, 1, 0, 5, 0, 6, 0, 9, 2, 8, 5, 8, 4, 3, 3, 6, 6, 5, 8, 4, 2, 0, 8, 8, 8
Offset: 1

Views

Author

Jean-François Alcover, May 14 2013

Keywords

Examples

			0.248754477033784262547252993576113976097369713668535116999855639690693032999...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.15 Glaisher-Kinkelin constant, p. 135.

Crossrefs

Programs

  • Mathematica
    RealDigits[Log[Glaisher], 10, 100] // First
  • PARI
    1/12-zeta'(-1) \\ Charles R Greathouse IV, Dec 12 2013

Formula

Equals 1/12 - zeta'(-1).
Also equals (gamma + log(2*Pi))/12 -zeta'(2)/(2*Pi^2).
From Amiram Eldar, Apr 15 2021: (Start)
Equals lim_{n->oo} (Sum_{k=1..n} k*log(k) - (n^2/2 + n/2 + 1/12)*log(n) + n^2/4).
Equals 1/8 + (1/2) * Sum_{n>=0} ((1/(n+1)) * Sum_{k=0..n} (-1)^(k+1) * binomial(n,k) * (k+1)^2 * log(k+1)) (Guillera and Sondow, 2008). (End)

A263352 Expansion of Product_{k>=1} 1/(1 - x^(2*k+3))^k.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 0, 2, 0, 3, 1, 4, 2, 5, 6, 7, 10, 9, 19, 14, 29, 23, 46, 38, 66, 64, 99, 107, 143, 171, 211, 270, 311, 418, 465, 633, 698, 945, 1049, 1399, 1579, 2052, 2364, 2997, 3527, 4366, 5219, 6339, 7686, 9197, 11234, 13321, 16340, 19261, 23622, 27796
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 16 2015

Keywords

Comments

From Vaclav Kotesovec, Oct 17 2015: (Start)
In general, if g.f. = Product_{k>=1} 1/(1-x^(2*k+v))^k and v>0 is odd, then a(n) ~ d2(v) * (2*n)^(v^2/24 - 25/36) * exp(-Pi^4 * v^2 / (1728*Zeta(3)) - Pi^2 * v * n^(1/3) /(3 * 2^(8/3) * Zeta(3)^(1/3)) + 3*Zeta(3)^(1/3) * n^(2/3) / 2^(4/3)) / (sqrt(3*Pi) * Zeta(3)^(v^2/24 - 7/36)), where Zeta(3) = A002117.
d2(v) = exp(Integral_{x=0..infinity} 1/(x*exp((v-2)*x) * (exp(2*x)- 1)^2) - (3*v^2-2)/(24*x*exp(x)) + v/(4*x^2) - 1/(4*x^3) dx).
d2(v) = 2^(v/4 - 1/12) * exp(-Zeta'(-1)/2) / Product_{j=1..(v-1)/2} (2*j-1)!!, where Zeta'(-1) = A084448 and Product_{j=1..(v-1)/2} (2*j-1)!! = A057863((v-1)/2).
d2(v) = 2^(1/12 + v/4 - v^2/8) * exp(1/12) * Pi^(v/4) / (A * G(v/2 + 1)), where A = A074962 is the Glaisher-Kinkelin constant and G is the Barnes G-function.
(End)

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember; `if`(n=0, 1, add(add(d*
          `if`(d>1 and d::odd, (d-3)/2, 0),
          d=divisors(j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..60);  # Alois P. Heinz, Oct 17 2015
  • Mathematica
    nmax = 60; CoefficientList[Series[Product[1/(1 - x^(2*k+3))^k, {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ 2^(25/72) * sqrt(A) * exp(-1/24 + 3 * 2^(-4/3) * Zeta(3)^(1/3) * n^(2/3) - Pi^4/(192*Zeta(3)) - Pi^2 * n^(1/3)/(2^(8/3) * Zeta(3)^(1/3))) / (sqrt(3*Pi) * Zeta(3)^(13/72) * n^(23/72)), where Zeta(3) = A002117 and A = A074962 is the Glaisher-Kinkelin constant.

A213080 Decimal expansion of Product_{n>=1} n! /(sqrt(2*Pi*n) * (n/e)^n * (1+1/n)^(1/12)).

Original entry on oeis.org

1, 0, 4, 6, 3, 3, 5, 0, 6, 6, 7, 7, 0, 5, 0, 3, 1, 8, 0, 9, 8, 0, 9, 5, 0, 6, 5, 6, 9, 7, 7, 7, 6, 0, 3, 7, 1, 0, 1, 9, 7, 4, 2, 1, 8, 1, 1, 3, 2, 6, 4, 4, 4, 2, 4, 4, 1, 5, 8, 7, 5, 3, 4, 0, 4, 2, 0, 3, 5, 7, 5, 1, 5, 6, 3, 7, 4, 4, 5, 7, 0, 7, 2, 5, 4, 8, 5, 8
Offset: 1

Views

Author

Keywords

Comments

Just as Stirling's formula for the asymptotic expansion of n! involves the constant sqrt{2 Pi}, the asymptotic expansion of the product of all binomial coefficients in a row of Pascal's triangle involves a constant, the reciprocal of the constant C defined and evaluated here.
From Bernd C. Kellner, Oct 13 2024: (Start)
It turns out that 1/C is not the complete asymptotic constant for the product of the binomial coefficients in a row of Pascal's triangle. A constant factor of (2*Pi)^(-1/4) was overlooked in the asymptotic expansion of that product given by Hirschhorn in 2013. The correct asymptotic constant is A377023.
However, the constant C equals the constant F(1) as introduced before in Kellner 2009. The constants F(1), F(2), ... occur in the same context of asymptotic constants related to asymptotic products of factorials as well as of binomial and multinomial coefficients. Moreover, the sequence (F(k)){k >= 1} is strictly decreasing with limit 1. For example, for k >= 1 the asymptotic product Prod{v >= 1} (k*v)! has the asymptotic constant F(k)*A^k*(2*Pi)^(1/4), where A = A074962 denotes the Glaisher-Kinkelin constant. Let gamma = A001620 be Euler's constant and Gamma(x) be the gamma function.
For k >= 1, the constants F(k) can be computed by an explicit formula and a divergent series expansion, as follows. We have log(F(k)) = (1/(12*k))*(1-log(k)) + (k/4)*log(2*Pi) - ((k^2+1)/k)*log(A) - Sum_{v=1..k-1} (v/k)*log(Gamma(v/k)) = gamma/(12*k) - t*zeta(3)/(360*k^3) with some t in (0,1), respectively.
It follows that log(F(1)) = 1/12 + log(2*Pi)/4 - 2*log(A) = gamma/12 - t*zeta(3)/360 with some t in (0,1), and so F(1) lies in the interval (1.0457...,1.0492...) (see Kellner 2009 and 2024). (End)

Examples

			1.04633506677050318098095065697776037101974218113264442441587534042035751563744...
		

Crossrefs

Programs

  • Maple
    exp(2*Zeta(1,-1)-1/12)*(2*Pi)^(1/4); evalf(%,100); # Peter Luschny, Jun 22 2012
  • Mathematica
    RealDigits[(Exp[1]^(1/12) (2 Pi)^(1/4))/Glaisher^2, 10, 100][[1]] (*Peter Luschny, Jun 22 2012 *)
  • PARI
    exp(2*zeta'(-1)-1/12)*(2*Pi)^(1/4) \\ Charles R Greathouse IV, Dec 12 2013
  • Sage
    import mpmath
    mpmath.mp.pretty=True; mpmath.mp.dps = 200 #precision
    mpmath.exp(2*mpmath.zeta(-1,1,1)-1/12)*(2*pi)^(1/4) # Peter Luschny, Jun 22 2012
    

Formula

Equals (exp(1)^(1/12)*(2*Pi)^(1/4))/A^2 where A denotes the Glaisher-Kinkelin constant.
Equals exp(2*zeta'(-1)-1/12)*(2*Pi)^(1/4).
A closely related constant is K = Product_{n>=1} (n!*(e/n)^(n+1/2))/ ((1+1/(n+1/2))^(1/12)*sqrt(2*Pi*e)) = (2^(1/6)*(3*e)^(1/12)*Pi^(1/4))/A^2 = exp(2*zeta'(-1)-1/12)*2^(1/6)*3^(1/12)*Pi^(1/4) = 1.082293504658977773529439... - Peter Luschny, Jun 22 2012
The sqrt of the constant equals Limit_{n>=1} (Product_{k=1..n-1} k!) / f(n) where f(n) = (2*Pi)^(n/2-1/8)*exp(1/24-3/4*n^2)*n^(1/2*n^2-1/12). - Peter Luschny, Jun 23 2012

A263397 Expansion of Product_{k>=1} 1/(1 - x^(2*k+9))^k.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, 1, 7, 2, 8, 6, 9, 10, 10, 19, 11, 28, 13, 44, 15, 60, 20, 85, 29, 110, 44, 146, 69, 183, 111, 233, 171, 286, 262, 358, 391, 441, 568, 553, 808, 697, 1129, 898, 1543, 1174, 2080, 1563, 2766
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 16 2015

Keywords

Comments

In general, if g.f. = Product_{k>=1} 1/(1-x^(2*k+v))^k and v>0 is odd, then a(n) ~ d2(v) * (2*n)^(v^2/24 - 25/36) * exp(-Pi^4 * v^2 / (1728*Zeta(3)) - Pi^2 * v * n^(1/3) /(3 * 2^(8/3) * Zeta(3)^(1/3)) + 3*Zeta(3)^(1/3) * n^(2/3) / 2^(4/3)) / (sqrt(3*Pi) * Zeta(3)^(v^2/24 - 7/36)), where Zeta(3) = A002117.
d2(v) = exp(Integral_{x=0..infinity} 1/(x*exp((v-2)*x) * (exp(2*x)- 1)^2) - (3*v^2-2)/(24*x*exp(x)) + v/(4*x^2) - 1/(4*x^3) dx).
d2(v) = 2^(v/4 - 1/12) * exp(-Zeta'(-1)/2) / Product_{j=1..(v-1)/2} (2*j-1)!!, where Zeta'(-1) = A084448 and Product_{j=1..(v-1)/2} (2*j-1)!! = A057863((v-1)/2).
d2(v) = 2^(1/12 + v/4 - v^2/8) * exp(1/12) * Pi^(v/4) / (A * G(v/2 + 1)), where A = A074962 is the Glaisher-Kinkelin constant and G is the Barnes G-function.

Crossrefs

Cf. A035528 (v=-1), A263150 (v=1), A263352 (v=3), A263395 (v=5), A263396 (v=7).

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember; local r; `if`(n=0, 1,
           add(add(`if`(irem(d-8, 2, 'r')=1, d*r, 0)
           , d=divisors(j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..65);  # Alois P. Heinz, Oct 17 2015
  • Mathematica
    nmax = 60; CoefficientList[Series[Product[1/(1 - x^(2*k+9))^k, {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 60; CoefficientList[Series[E^Sum[x^(11*k)/(k*(1-x^(2*k))^2), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: exp(Sum_{k>=1} x^(11*k)/(k*(1-x^(2*k))^2)).
a(n) ~ 16 * 2^(61/72) * exp(-1/24 - 3*Pi^4/(64*Zeta(3)) - 3*Pi^2 * n^(1/3) / (2^(8/3) * Zeta(3)^(1/3)) + 3 * Zeta(3)^(1/3) * n^(2/3) / 2^(4/3)) * sqrt(A) * n^(193/72) / (4725*sqrt(3*Pi) * Zeta(3)^(229/72)), where Zeta(3) = A002117 and A = A074962 is the Glaisher-Kinkelin constant.

A249386 Decimal expansion of the constant 'a' appearing in the asymptotic expression of the number of plane partitions of n as a*n^(-25/36)*exp(b*n^(2/3)).

Original entry on oeis.org

2, 3, 1, 5, 1, 6, 8, 1, 3, 4, 4, 8, 8, 9, 8, 3, 7, 0, 5, 6, 0, 3, 5, 6, 4, 0, 6, 4, 0, 6, 3, 3, 2, 1, 1, 0, 8, 5, 5, 1, 2, 9, 2, 1, 2, 5, 9, 3, 2, 8, 7, 9, 2, 6, 5, 9, 7, 9, 4, 4, 5, 2, 4, 1, 7, 6, 7, 3, 9, 6, 6, 5, 4, 3, 9, 4, 4, 2, 0, 2, 2, 7, 4, 5, 1, 2, 7, 5, 3, 1, 9, 7, 2, 3, 2, 5, 3, 0, 3, 0, 2, 3, 6, 6
Offset: 0

Views

Author

Jean-François Alcover, Oct 27 2014

Keywords

Comments

The paper by Finch contains an error: the denominator should be sqrt(3*Pi), not sqrt(Pi). The constant 0.4009988836 is wrong. The formula in A000219 and the article by L. Mutafchiev and E. Kamenov (page 6) is correct. - Vaclav Kotesovec, Oct 27 2014. [In new version of prt.pdf is already corrected. - Vaclav Kotesovec, May 11 2015]

Examples

			0.231516813448898370560356406406332110855129212593287926597944524...
		

Crossrefs

Programs

  • Mathematica
    a = Zeta[3]^(7/36)*Exp[Zeta'[-1]]/(2^(11/36)*Sqrt[3*Pi]); RealDigits[a, 10, 104] // First

Formula

Equals zeta(3)^(7/36)*exp(zeta'(-1))/(2^(11/36)*sqrt(3*Pi)).
Equals exp(1/12) * A002117^(7/36) / (A074962 * 2^(11/36) * sqrt(3*Pi)). - Vaclav Kotesovec, Mar 02 2015
Previous Showing 21-30 of 45 results. Next