cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 30 results. Next

A085455 Sum_{i=0..n} Sum_{j=0..i} a(j) * a(i-j) = (-3)^n.

Original entry on oeis.org

1, -2, 4, -10, 26, -70, 192, -534, 1500, -4246, 12092, -34606, 99442, -286730, 829168, -2403834, 6984234, -20331558, 59287740, -173149662, 506376222, -1482730098, 4346486256, -12754363650, 37461564504, -110125172682, 323990062452, -953883382354, 2810310510110, -8284915984726
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), Jul 01 2003

Keywords

Crossrefs

Absolute values are in A025565.

Programs

  • Mathematica
    CoefficientList[Series[Sqrt[(1-x)/(1+3x)], {x, 0, 30}], x]
  • PARI
    a(n) = sum(k=0, n, (-1)^k*binomial(n-1, n-k)*binomial(2*k, k)); \\ Seiichi Manyama, Feb 03 2023

Formula

G.f.: A(x)=Sqrt((1-x)/(1+3x)).
G.f.: G(0), where G(k)= 1 + 4*x*(4*k+1)/( (x-1)*(4*k+2) - x*(x-1)*(4*k+2)*(4*k+3)/(x*(4*k+3) + (x-1)*(k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 26 2013
From Seiichi Manyama, Feb 03 2023: (Start)
a(n) = Sum_{k=0..n} (-1)^k * binomial(n-1,n-k) * binomial(2*k,k).
n*a(n) = -2*n*a(n-1) + 3*(n-2)*a(n-2). (End)
From Seiichi Manyama, Aug 22 2025: (Start)
a(n) = (1/4)^n * Sum_{k=0..n} (-3)^k * binomial(2*k,k) * binomial(2*(n-k),n-k)/(1-2*(n-k)).
a(n) = Sum_{k=0..n} (-3)^(n-k) * binomial(2*k,k)/(1-2*k) * binomial(n-1,n-k). (End)

A359489 Expansion of 1/sqrt(1 - 4*x/(1-x)^3).

Original entry on oeis.org

1, 2, 12, 68, 396, 2358, 14262, 87252, 538440, 3345434, 20899816, 131154264, 826135794, 5220372274, 33077821314, 210087769632, 1337104370320, 8525602760550, 54449281992528, 348250972411252, 2230296171922008, 14300414859019290, 91791793780179790
Offset: 0

Views

Author

Seiichi Manyama, Mar 24 2023

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/Sqrt[1-(4x)/(1-x)^3],{x,0,30}],x] (* Harvey P. Dale, Aug 09 2023 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(1/sqrt(1-4*x/(1-x)^3))
    
  • PARI
    a(n) = sum(k=0, n, binomial(2*k,k) * binomial(n+2*k-1,n-k)) \\ Winston de Greef, Mar 24 2023

Formula

a(n) = Sum_{k=0..n} binomial(2*k,k) * binomial(n+2*k-1,n-k).
n*a(n) = (8*n-6)*a(n-1) - (10*n-24)*a(n-2) + 4*(n-3)*a(n-3) - (n-4)*a(n-4) for n > 3.
a(n) ~ sqrt(2*(2 + (35 + 3*sqrt(129))^(1/3))) * (40 + 7*(262 + 6*sqrt(129))^(1/3) + (262 + 6*sqrt(129))^(2/3))^n / ((43*(86 + 6*sqrt(129)))^(1/6) * sqrt(Pi*n) * 3^n * (262 + 6*sqrt(129))^(n/3)). - Vaclav Kotesovec, Mar 25 2023
a(0) = 1; a(n) = (2/n) * Sum_{k=0..n-1} (n+k) * binomial(n+1-k,2) * a(k). - Seiichi Manyama, Mar 28 2023

A360321 a(n) = Sum_{k=0..n} 5^(n-k) * binomial(n-1,n-k) * binomial(2*k,k).

Original entry on oeis.org

1, 2, 16, 130, 1070, 8902, 74724, 631902, 5376840, 45990070, 395106656, 3407196982, 29477061166, 255733684010, 2224098916300, 19384492018770, 169270624419390, 1480625235653670, 12970844831940000, 113785067475668550, 999400688480388570
Offset: 0

Views

Author

Seiichi Manyama, Feb 03 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[5^(n-k) Binomial[n-1,n-k]Binomial[2k,k],{k,0,n}],{n,0,20}] (* Harvey P. Dale, Jun 22 2025 *)
  • PARI
    a(n) = sum(k=0, n, 5^(n-k)*binomial(n-1, n-k)*binomial(2*k, k));
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(sqrt((1-5*x)/(1-9*x)))

Formula

G.f.: sqrt( (1-5*x)/(1-9*x) ).
n*a(n) = 2*(7*n-6)*a(n-1) - 45*(n-2)*a(n-2).
Sum_{i=0..n} Sum_{j=0..i} (1/5)^i * a(j) * a(i-j) = (9/5)^n.
a(n) ~ 2 * 3^(2*n-1) / sqrt(Pi*n). - Vaclav Kotesovec, Feb 04 2023
From Seiichi Manyama, Aug 22 2025: (Start)
a(n) = (1/4)^n * Sum_{k=0..n} 9^k * 5^(n-k) * binomial(2*k,k) * binomial(2*(n-k),n-k)/(1-2*(n-k)).
a(n) = Sum_{k=0..n} (-1)^k * 9^(n-k) * binomial(2*k,k)/(1-2*k) * binomial(n-1,n-k). (End)

A377197 Expansion of 1/(1 - 4*x/(1-x))^(3/2).

Original entry on oeis.org

1, 6, 36, 206, 1146, 6258, 33728, 180018, 953628, 5021698, 26315676, 137350746, 714455826, 3705635646, 19171860336, 98973407550, 509963556330, 2623133951730, 13472299015580, 69098721151530, 353966981339070, 1811212435206070, 9258333786967920, 47281424213258070
Offset: 0

Views

Author

Seiichi Manyama, Oct 19 2024

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 35); Coefficients(R!( 1/(1 - 4*x/(1-x))^(3/2))); // Vincenzo Librandi, May 11 2025
  • Mathematica
    Table[Sum[(2*k+1)*Binomial[2*k,k]*Binomial[n-1,n-k],{k,0,n}],{n,0,30}] (* Vincenzo Librandi, May 11 2025 *)
  • PARI
    a(n) = sum(k=0, n, (2*k+1)*binomial(2*k, k)*binomial(n-1, n-k));
    

Formula

a(0) = 1; a(n) = 2 * Sum_{k=0..n-1} (3-k/n) * a(k).
a(n) = (6*n*a(n-1) - 5*(n-2)*a(n-2))/n for n > 1.
a(n) = Sum_{k=0..n} (2*k+1) * binomial(2*k,k) * binomial(n-1,n-k).
a(n) ~ 16 * sqrt(n) * 5^(n - 3/2) / sqrt(Pi). - Vaclav Kotesovec, Oct 26 2024
a(n) = 6*hypergeom([5/2, 1-n], [2], -4) for n > 0. - Stefano Spezia, May 08 2025

A360291 a(n) = Sum_{k=0..floor(n/3)} binomial(n-1-2*k,k) * binomial(2*n-6*k,n-3*k).

Original entry on oeis.org

1, 2, 6, 20, 72, 264, 984, 3714, 14148, 54284, 209482, 812196, 3161340, 12345658, 48348522, 189807336, 746740510, 2943359208, 11620961412, 45950375602, 181936110006, 721233025332, 2862271873966, 11370584735100, 45212101270728, 179926167512914
Offset: 0

Views

Author

Seiichi Manyama, Feb 01 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\3, binomial(n-1-2*k, k)*binomial(2*n-6*k, n-3*k));
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(1/sqrt(1-4*x/(1-x^3)))

Formula

G.f.: 1 / sqrt(1-4*x/(1-x^3)).
n*a(n) = 2*(2*n-1)*a(n-1) + 2*(n-3)*a(n-3) - 2*(2*n-10)*a(n-4) - (n-6)*a(n-6).
a(n) = A383581(n) - A383581(n-3). - Seiichi Manyama, May 01 2025

A360292 a(n) = Sum_{k=0..floor(n/4)} binomial(n-1-3*k,k) * binomial(2*n-8*k,n-4*k).

Original entry on oeis.org

1, 2, 6, 20, 70, 254, 936, 3492, 13150, 49882, 190318, 729576, 2807816, 10841962, 41983588, 162973568, 633994982, 2471010742, 9646981054, 37718873700, 147676286078, 578883674722, 2271704404900, 8923807316892, 35087269756344, 138075819924306
Offset: 0

Views

Author

Seiichi Manyama, Feb 01 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\4, binomial(n-1-3*k, k)*binomial(2*n-8*k, n-4*k));
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(1/sqrt(1-4*x/(1-x^4)))

Formula

G.f.: 1 / sqrt(1-4*x/(1-x^4)).
n*a(n) = 2*(2*n-1)*a(n-1) + 2*(n-4)*a(n-4) - 2*(2*n-13)*a(n-5) - (n-8)*a(n-8).
a(n) = A383582(n) - A383582(n-4). - Seiichi Manyama, May 01 2025

A360319 a(n) = Sum_{k=0..n} 4^(n-k) * binomial(n-1,n-k) * binomial(2*k,k).

Original entry on oeis.org

1, 2, 14, 100, 726, 5340, 39692, 297544, 2245990, 17050796, 130061412, 996078456, 7654571772, 58995989400, 455857911768, 3530234227344, 27392392806534, 212918339726028, 1657570714812020, 12922254685161112, 100867892292766612
Offset: 0

Views

Author

Seiichi Manyama, Feb 03 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, 4^(n-k)*binomial(n-1, n-k)*binomial(2*k, k));
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(sqrt((1-4*x)/(1-8*x)))

Formula

G.f.: sqrt( (1-4*x)/(1-8*x) ).
n*a(n) = 2*(6*n-5)*a(n-1) - 32*(n-2)*a(n-2).
Sum_{i=0..n} Sum_{j=0..i} (1/4)^i * a(j) * a(i-j) = 2^n.
a(n) ~ 2^(3*n - 1/2) / sqrt(Pi*n). - Vaclav Kotesovec, Feb 04 2023
From Seiichi Manyama, Aug 22 2025: (Start)
a(n) = Sum_{k=0..n} 2^k * binomial(2*k,k) * binomial(2*(n-k),n-k)/(1-2*(n-k)).
a(n) = Sum_{k=0..n} (-1)^k * 8^(n-k) * binomial(2*k,k)/(1-2*k) * binomial(n-1,n-k). (End)

A360322 a(n) = Sum_{k=0..n} (-5)^(n-k) * binomial(n-1,n-k) * binomial(2*k,k).

Original entry on oeis.org

1, 2, -4, 10, -30, 102, -376, 1462, -5900, 24470, -103644, 446382, -1948854, 8605290, -38362200, 172423770, -780496110, 3554991270, -16281079900, 74927379550, -346328465930, 1607078948690, -7483861047480, 34963419415650, -163825013554400, 769694347677002
Offset: 0

Views

Author

Seiichi Manyama, Feb 03 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, (-5)^(n-k)*binomial(n-1, n-k)*binomial(2*k, k));
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(sqrt((1+5*x)/(1+x)))

Formula

G.f.: sqrt( (1+5*x)/(1+x) ).
n*a(n) = 2*(-3*n+4)*a(n-1) - 5*(n-2)*a(n-2).
Sum_{i=0..n} Sum_{j=0..i} (-1/5)^i * a(j) * a(i-j) = (1/5)^n.
a(n) = 2 * (-1)^(n+1) * A007317(n) for n > 0.
From Seiichi Manyama, Aug 22 2025: (Start)
a(n) = (-1/4)^n * Sum_{k=0..n} 5^(n-k) * binomial(2*k,k) * binomial(2*(n-k),n-k)/(1-2*(n-k)).
a(n) = (-1)^n * Sum_{k=0..n} binomial(2*k,k)/(1-2*k) * binomial(n-1,n-k). (End)

A361815 Expansion of 1/sqrt(1 - 4*x*(1-x)^2).

Original entry on oeis.org

1, 2, 2, -2, -14, -32, -30, 64, 346, 752, 584, -2044, -9486, -19324, -11368, 66180, 271658, 514916, 192584, -2151612, -7949736, -13933280, -1779028, 69933368, 235295106, 378579404, -61171228, -2267724644, -7003832456, -10248117752, 5236354188, 73288104568
Offset: 0

Views

Author

Seiichi Manyama, Mar 25 2023

Keywords

Comments

Diagonal of rational function 1/(1 - (1 - x*y) * (x + y)).

Crossrefs

Programs

  • PARI
    my(N=40, x='x+O('x^N)); Vec(1/sqrt(1-4*x*(1-x)^2))

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(2*k,k) * binomial(2*k,n-k).
n*a(n) = 2 * ( (2*n-1)*a(n-1) - 2*(2*n-2)*a(n-2) + (2*n-3)*a(n-3) ) for n > 2.

A361816 Expansion of 1/sqrt(1 - 4*x*(1-x)^3).

Original entry on oeis.org

1, 2, 0, -10, -22, 12, 174, 344, -354, -3304, -5780, 9180, 65258, 99132, -226620, -1313580, -1690990, 5441340, 26681700, 28070100, -128211552, -543818824, -440381780, 2978145240, 11080939914, 6162798092, -68377892976, -225107280388, -64286124152
Offset: 0

Views

Author

Seiichi Manyama, Mar 25 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(1/sqrt(1-4*x*(1-x)^3))

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(2*k,k) * binomial(3*k,n-k).
n*a(n) = 2 * ( (2*n-1)*a(n-1) - 3*(2*n-2)*a(n-2) + 3*(2*n-3)*a(n-3) - (2*n-4)*a(n-4) ) for n > 3.
Previous Showing 11-20 of 30 results. Next