A085455
Sum_{i=0..n} Sum_{j=0..i} a(j) * a(i-j) = (-3)^n.
Original entry on oeis.org
1, -2, 4, -10, 26, -70, 192, -534, 1500, -4246, 12092, -34606, 99442, -286730, 829168, -2403834, 6984234, -20331558, 59287740, -173149662, 506376222, -1482730098, 4346486256, -12754363650, 37461564504, -110125172682, 323990062452, -953883382354, 2810310510110, -8284915984726
Offset: 0
Mario Catalani (mario.catalani(AT)unito.it), Jul 01 2003
-
CoefficientList[Series[Sqrt[(1-x)/(1+3x)], {x, 0, 30}], x]
-
a(n) = sum(k=0, n, (-1)^k*binomial(n-1, n-k)*binomial(2*k, k)); \\ Seiichi Manyama, Feb 03 2023
A359489
Expansion of 1/sqrt(1 - 4*x/(1-x)^3).
Original entry on oeis.org
1, 2, 12, 68, 396, 2358, 14262, 87252, 538440, 3345434, 20899816, 131154264, 826135794, 5220372274, 33077821314, 210087769632, 1337104370320, 8525602760550, 54449281992528, 348250972411252, 2230296171922008, 14300414859019290, 91791793780179790
Offset: 0
-
CoefficientList[Series[1/Sqrt[1-(4x)/(1-x)^3],{x,0,30}],x] (* Harvey P. Dale, Aug 09 2023 *)
-
my(N=30, x='x+O('x^N)); Vec(1/sqrt(1-4*x/(1-x)^3))
-
a(n) = sum(k=0, n, binomial(2*k,k) * binomial(n+2*k-1,n-k)) \\ Winston de Greef, Mar 24 2023
A360321
a(n) = Sum_{k=0..n} 5^(n-k) * binomial(n-1,n-k) * binomial(2*k,k).
Original entry on oeis.org
1, 2, 16, 130, 1070, 8902, 74724, 631902, 5376840, 45990070, 395106656, 3407196982, 29477061166, 255733684010, 2224098916300, 19384492018770, 169270624419390, 1480625235653670, 12970844831940000, 113785067475668550, 999400688480388570
Offset: 0
-
Table[Sum[5^(n-k) Binomial[n-1,n-k]Binomial[2k,k],{k,0,n}],{n,0,20}] (* Harvey P. Dale, Jun 22 2025 *)
-
a(n) = sum(k=0, n, 5^(n-k)*binomial(n-1, n-k)*binomial(2*k, k));
-
my(N=30, x='x+O('x^N)); Vec(sqrt((1-5*x)/(1-9*x)))
A377197
Expansion of 1/(1 - 4*x/(1-x))^(3/2).
Original entry on oeis.org
1, 6, 36, 206, 1146, 6258, 33728, 180018, 953628, 5021698, 26315676, 137350746, 714455826, 3705635646, 19171860336, 98973407550, 509963556330, 2623133951730, 13472299015580, 69098721151530, 353966981339070, 1811212435206070, 9258333786967920, 47281424213258070
Offset: 0
-
R:=PowerSeriesRing(Rationals(), 35); Coefficients(R!( 1/(1 - 4*x/(1-x))^(3/2))); // Vincenzo Librandi, May 11 2025
-
Table[Sum[(2*k+1)*Binomial[2*k,k]*Binomial[n-1,n-k],{k,0,n}],{n,0,30}] (* Vincenzo Librandi, May 11 2025 *)
-
a(n) = sum(k=0, n, (2*k+1)*binomial(2*k, k)*binomial(n-1, n-k));
A360291
a(n) = Sum_{k=0..floor(n/3)} binomial(n-1-2*k,k) * binomial(2*n-6*k,n-3*k).
Original entry on oeis.org
1, 2, 6, 20, 72, 264, 984, 3714, 14148, 54284, 209482, 812196, 3161340, 12345658, 48348522, 189807336, 746740510, 2943359208, 11620961412, 45950375602, 181936110006, 721233025332, 2862271873966, 11370584735100, 45212101270728, 179926167512914
Offset: 0
-
a(n) = sum(k=0, n\3, binomial(n-1-2*k, k)*binomial(2*n-6*k, n-3*k));
-
my(N=30, x='x+O('x^N)); Vec(1/sqrt(1-4*x/(1-x^3)))
A360292
a(n) = Sum_{k=0..floor(n/4)} binomial(n-1-3*k,k) * binomial(2*n-8*k,n-4*k).
Original entry on oeis.org
1, 2, 6, 20, 70, 254, 936, 3492, 13150, 49882, 190318, 729576, 2807816, 10841962, 41983588, 162973568, 633994982, 2471010742, 9646981054, 37718873700, 147676286078, 578883674722, 2271704404900, 8923807316892, 35087269756344, 138075819924306
Offset: 0
-
a(n) = sum(k=0, n\4, binomial(n-1-3*k, k)*binomial(2*n-8*k, n-4*k));
-
my(N=30, x='x+O('x^N)); Vec(1/sqrt(1-4*x/(1-x^4)))
A360319
a(n) = Sum_{k=0..n} 4^(n-k) * binomial(n-1,n-k) * binomial(2*k,k).
Original entry on oeis.org
1, 2, 14, 100, 726, 5340, 39692, 297544, 2245990, 17050796, 130061412, 996078456, 7654571772, 58995989400, 455857911768, 3530234227344, 27392392806534, 212918339726028, 1657570714812020, 12922254685161112, 100867892292766612
Offset: 0
-
a(n) = sum(k=0, n, 4^(n-k)*binomial(n-1, n-k)*binomial(2*k, k));
-
my(N=30, x='x+O('x^N)); Vec(sqrt((1-4*x)/(1-8*x)))
A360322
a(n) = Sum_{k=0..n} (-5)^(n-k) * binomial(n-1,n-k) * binomial(2*k,k).
Original entry on oeis.org
1, 2, -4, 10, -30, 102, -376, 1462, -5900, 24470, -103644, 446382, -1948854, 8605290, -38362200, 172423770, -780496110, 3554991270, -16281079900, 74927379550, -346328465930, 1607078948690, -7483861047480, 34963419415650, -163825013554400, 769694347677002
Offset: 0
-
a(n) = sum(k=0, n, (-5)^(n-k)*binomial(n-1, n-k)*binomial(2*k, k));
-
my(N=30, x='x+O('x^N)); Vec(sqrt((1+5*x)/(1+x)))
A361815
Expansion of 1/sqrt(1 - 4*x*(1-x)^2).
Original entry on oeis.org
1, 2, 2, -2, -14, -32, -30, 64, 346, 752, 584, -2044, -9486, -19324, -11368, 66180, 271658, 514916, 192584, -2151612, -7949736, -13933280, -1779028, 69933368, 235295106, 378579404, -61171228, -2267724644, -7003832456, -10248117752, 5236354188, 73288104568
Offset: 0
A361816
Expansion of 1/sqrt(1 - 4*x*(1-x)^3).
Original entry on oeis.org
1, 2, 0, -10, -22, 12, 174, 344, -354, -3304, -5780, 9180, 65258, 99132, -226620, -1313580, -1690990, 5441340, 26681700, 28070100, -128211552, -543818824, -440381780, 2978145240, 11080939914, 6162798092, -68377892976, -225107280388, -64286124152
Offset: 0
Comments