A374279
a(n) is the minimal determinant of an n X n symmetric Toeplitz matrix having 0 on the main diagonal and all the integers 1, 2, ..., n-1 off-diagonal.
Original entry on oeis.org
1, 0, -1, 4, -44, -946, -8281, -592100, -25369920, -511563816, -55400732937
Offset: 0
a(5) = -946:
[0, 1, 4, 2, 3]
[1, 0, 1, 4, 2]
[4, 1, 0, 1, 4]
[2, 4, 1, 0, 1]
[3, 2, 4, 1, 0]
-
a[0]=1; a[n_]:=Min[Table[Det[ToeplitzMatrix[Join[{0},Part[Permutations[Range[n-1]],i]]]],{i,(n-1)!}]]; Array[a,11,0]
A374280
a(n) is the maximal determinant of an n X n symmetric Toeplitz matrix having 0 on the main diagonal and all the integers 1, 2, ..., n-1 off-diagonal.
Original entry on oeis.org
1, 0, -1, 8, 28, 282, 27495, 581268, 17344692, 1246207300, 33366771123
Offset: 0
a(5) = 282:
[0, 3, 4, 2, 1]
[3, 0, 3, 4, 2]
[4, 3, 0, 3, 4]
[2, 4, 3, 0, 3]
[1, 2, 4, 3, 0]
-
a[0]=1; a[n_]:=Max[Table[Det[ToeplitzMatrix[Join[{0},Part[Permutations[Range[n-1]],i]]]],{i,(n-1)!}]]; Array[a,11,0]
A374281
a(n) is the maximal absolute value of the determinant of an n X n symmetric Toeplitz matrix having 0 on the main diagonal and all the integers 1, 2, ..., n-1 off-diagonal.
Original entry on oeis.org
1, 0, 1, 8, 44, 946, 27495, 592100, 25369920, 1246207300, 55400732937
Offset: 0
a(5) = 946:
[0, 1, 4, 2, 3]
[1, 0, 1, 4, 2]
[4, 1, 0, 1, 4]
[2, 4, 1, 0, 1]
[3, 2, 4, 1, 0]
-
a[0]=1; a[n_]:=Max[Table[Abs[Det[ToeplitzMatrix[Join[{0},Part[Permutations[Range[n-1]],i]]]]],{i,(n-1)!}]]; Array[a,11,0]
A374282
a(n) is the minimal absolute value of the determinant of a nonsingular n X n symmetric Toeplitz matrix having 0 on the main diagonal and all the integers 1, 2, ..., n-1 off-diagonal.
Original entry on oeis.org
1, 4, 12, 2, 13, 16, 21, 4, 1
Offset: 2
a(5) = 2:
[0, 4, 1, 2, 3]
[4, 0, 4, 1, 2]
[1, 4, 0, 4, 1]
[2, 1, 4, 0, 4]
[3, 2, 1, 4, 0]
-
a[n_]:=Min[Select[Table[Abs[Det[ToeplitzMatrix[Join[{0},Part[Permutations[Range[n-1]],i]]]]],{i,(n-1)!}],Positive]]; Array[a,9,2]
A203993
Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of {|i-j}, (A049581).
Original entry on oeis.org
0, -1, -1, 0, 1, 4, 6, 0, -1, -12, -32, -20, 0, 1, 32, 120, 140, 50, 0, -1, -80, -384, -648, -448, -105, 0, 1, 192, 1120, 2464, 2520, 1176, 196, 0, -1, -448, -3072, -8320, -11264, -7920, -2688, -336, 0, 1, 1024, 8064, 25920, 43680
Offset: 1
The array T (a table if row n=0 is by convention put to 0) begins:
n\k 0 1 2 3 4 5 6 7 8 9 10 ...
(0: 0)
1: 0 -1
2: -1 0 1
3: 4 6 0 -1
4: -12 -32 -20 0 1
5: 32 120 140 50 0 -1
6: -80 -384 -648 -448 -105 0 1
7: 192 1120 2464 2520 1176 196 0 -1
8: -448 -3072 -8320 -11264 -7920 -2688 -336 0 1
9: 1024 8064 25920 43680 41184 21384 5544 540 0 -1
10: -2304 -20480 -76160 -153600 -182000 -128128 -51480 -10560 -825 0 1
... reformatted and extended. - _Wolfdieter Lang_, Feb 02 2018
- (For references regarding interlacing roots, see A202605.)
-
(* begin*)
f[i_, j_] := Abs[i - j];
m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
TableForm[m[6]] (* 6x6 principal submatrix *)
Flatten[Table[f[i, n + 1 - i],
{n, 1, 12}, {i, 1, n}]] (* A049581 *)
p[n_] := CharacteristicPolynomial[m[n], x];
c[n_] := CoefficientList[p[n], x]
TableForm[Flatten[Table[p[n], {n, 1, 10}]]]
Table[c[n], {n, 1, 12}]
Flatten[%] (* A203993 *)
TableForm[Table[c[n], {n, 1, 10}]]
(* end *)
CoefficientList[Table[CharacteristicPolynomial[SparseArray[{i_, j_} :> Abs[i - j], n], x], {n, 10}], x] //Flatten (* Eric W. Weisstein, Apr 07 2017 *)
CoefficientList[Table[((-x)^n (x + x ChebyshevT[2 n, Sqrt[1 + 1/(2 x)]] - n ChebyshevU[n - 1, 1 + 1/x]))/(2 x), {n, 10}], x] // Flatten (* Eric W. Weisstein, Apr 07 2017 *)
CoefficientList[Table[1/4 (2 (-x)^n + (-1 - x - Sqrt[1 + 2 x])^n + (-1 - x + Sqrt[1 + 2 x])^n + (n (-(-1 - x - Sqrt[1 + 2 x])^n + (-1 - x + Sqrt[1 + 2 x])^n))/Sqrt[1 + 2 x]), {n, 10}], x] // Flatten (* Eric W. Weisstein, Apr 07 2017 *)
CoefficientList[LinearRecurrence[{-4 - 5 x, -2 (2 + 6 x + 5 x^2), -2 x (2 + 6 x + 5 x^2), -x^3 (4 + 5 x), -x^5}, {-x, (-1 + x) (1 + x), -(2 + x) (-2 - 2 x + x^2), (-6 - 4 x + x^2) (2 + 4 x + x^2), -(4 + 6 x + x^2) (-8 - 18 x - 6 x^2 + x^3)}, 10], x] // Flatten (* Eric W. Weisstein, Apr 07 2017 *)
A353452
a(n) is the determinant of the n X n symmetric matrix M(n) that is defined as M[i,j] = abs(i - j) if min(i, j) < max(i, j) <= 2*min(i, j), and otherwise 0.
Original entry on oeis.org
1, 0, -1, 0, 1, -4, 12, 64, -172, -1348, 3456, 34240, -87084, 370640, -872336, -22639616, 52307088, -181323568, 399580288, 23627011200, -51305628400, -686160247552, 1545932859328, 68098264912128, -155370174372864, 6326621032802304, -13829529077133312, -1087288396552040448
Offset: 0
a(8) = -172:
0, 1, 0, 0, 0, 0, 0, 0;
1, 0, 1, 2, 0, 0, 0, 0;
0, 1, 0, 1, 2, 3, 0, 0;
0, 2, 1, 0, 1, 2, 3, 4;
0, 0, 2, 1, 0, 1, 2, 3;
0, 0, 3, 2, 1, 0, 1, 2;
0, 0, 0, 3, 2, 1, 0, 1;
0, 0, 0, 4, 3, 2, 1, 0.
-
Join[{1},Table[Det[Table[If[Min[i,j]
-
a(n) = matdet(matrix(n, n, i, j, if ((min(i,j) < max(i,j)) && (max(i,j) <= 2*min(i,j)), abs(i-j)))); \\ Michel Marcus, Apr 20 2022
-
from sympy import Matrix
def A353452(n): return Matrix(n, n, lambda i, j: abs(i-j) if min(i,j)Chai Wah Wu, Aug 29 2023
A353453
a(n) is the permanent of the n X n symmetric matrix M(n) that is defined as M[i,j] = abs(i - j) if min(i, j) < max(i, j) <= 2*min(i, j), and otherwise 0.
Original entry on oeis.org
1, 0, 1, 0, 1, 4, 64, 576, 7844, 63524, 882772, 11713408, 252996564, 5879980400, 184839020672, 5698866739200, 229815005974352, 9350598794677712, 480306381374466176, 23741710999960266176, 1446802666239931811472, 86153125248221968292928, 6197781268948296566634304
Offset: 0
a(8) = 7844:
0, 1, 0, 0, 0, 0, 0, 0;
1, 0, 1, 2, 0, 0, 0, 0;
0, 1, 0, 1, 2, 3, 0, 0;
0, 2, 1, 0, 1, 2, 3, 4;
0, 0, 2, 1, 0, 1, 2, 3;
0, 0, 3, 2, 1, 0, 1, 2;
0, 0, 0, 3, 2, 1, 0, 1;
0, 0, 0, 4, 3, 2, 1, 0.
-
Join[{1},Table[Permanent[Table[If[Min[i,j]
-
a(n) = matpermanent(matrix(n, n, i, j, if ((min(i,j) < max(i,j)) && (max(i,j) <= 2*min(i,j)), abs(i-j)))); \\ Michel Marcus, Apr 20 2022
-
from sympy import Matrix
def A353453(n): return Matrix(n, n, lambda i, j: abs(i-j) if min(i,j)Chai Wah Wu, Aug 29 2023
A278857
a(n) = permanent M_n where M_n is the n X n matrix m(i,j) = (i-j)^2.
Original entry on oeis.org
1, 0, 1, 8, 676, 49600, 10335908, 2658757248, 1214367336000, 730771063280640, 642638269862752320, 736176718456263406080, 1122592471007868379259136, 2168016139899273930219233280, 5288852927890824307509101287680, 15889369670472598370104100032512000
Offset: 0
-
with(LinearAlgebra):
a:= n-> `if`(n=0, 1, Permanent(Matrix(n, (i, j)-> (i-j)^2))):
seq(a(n), n=0..16); # Vaclav Kotesovec, Nov 30 2016, after Alois P. Heinz
-
Flatten[{1, Table[Permanent[Table[(i-j)^2, {i, 1, n}, {j, 1, n}]], {n, 1, 15}]}]
-
{a(n) = matpermanent(matrix(n, n, i, j, (i-j)^2))}
for(n=0, 20, print1(a(n), ", ")) \\ Vaclav Kotesovec, Aug 12 2021
A278858
a(n) = permanent M_n where M_n is the n X n matrix m(i,j) = abs(i^2-j^2).
Original entry on oeis.org
1, 0, 9, 240, 36864, 7741440, 3363235524, 2203143038208, 2248347011420160, 3260265586467690240, 6578570637254005920000, 17755898734939822501524480, 62673017366111480630785474560, 282641923592380319367599892725760, 1599753679036773033206787507696238848
Offset: 0
-
Flatten[{1, Table[Permanent[Table[Abs[i^2-j^2], {i, 1, n}, {j, 1, n}]], {n, 1, 15}]}]
-
{a(n) = matpermanent(matrix(n, n, i, j, abs(i^2-j^2)))}
for(n=0, 20, print1(a(n), ", ")) \\ Vaclav Kotesovec, Aug 12 2021
A085799
Determinant of the symmetric n X n matrix A defined by A[i,j] = abs(i^2 - j^2) for 1 <= i,j <= n.
Original entry on oeis.org
0, -9, 240, -6300, 181440, -5821200, 207567360, -8172964800, 352864512000, -16593453676800, 844757641728000, -46306798060723200, 2720119606364160000, -170493211041753600000, 11359219476176732160000, -801737767492652390400000, 59762476409805241712640000, -4691769415367001788620800000
Offset: 1
Yuval Dekel (dekelyuval(AT)hotmail.com), Jul 24 2003
From _Klaus Brockhaus_, Apr 28 2010: (Start)
a(5) = determinant(A) = 181440 where A is the matrix
[ 0 3 8 15 24]
[ 3 0 5 12 21]
[ 8 5 0 7 16]
[15 12 7 0 9]
[24 21 16 9 0] (End)
-
[ Determinant( SymmetricMatrix( &cat[ [ Abs(i^2-j^2): j in [1..i] ]: i in [1..n] ] ) ): n in [1..15] ]; // Klaus Brockhaus, Apr 28 2010
-
(Conjectured to give the same sequence, apart from signs): a:=n->sum((count(Permutation(n*2-1),size=n+1)),j=0..n)/2: seq(a(n), n=1..16); # Zerinvary Lajos, May 03 2007
-
A[i_, j_] := Abs[i^2 - j^2]; a[n_] := Det[Table[A[i, j], {i, n}, {j, n}]]; Table[a[n], {n, 44}] (* José María Grau Ribas, Apr 17 2010 *)
-
a(n) = matdet(matrix(n, n, i, j, abs(i^2-j^2))); \\ Michel Marcus, Aug 14 2017
Comments