cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A015544 Lucas sequence U(5,-8): a(n+1) = 5*a(n) + 8*a(n-1), a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 5, 33, 205, 1289, 8085, 50737, 318365, 1997721, 12535525, 78659393, 493581165, 3097180969, 19434554165, 121950218577, 765227526205, 4801739379641, 30130517107845, 189066500576353, 1186376639744525, 7444415203333449, 46713089134623445
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n le 2 select n-1 else 5*Self(n-1) + 8*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 13 2012
    
  • Mathematica
    a[n_]:=(MatrixPower[{{1,2},{1,-6}},n].{{1},{1}})[[2,1]]; Table[Abs[a[n]],{n,-1,40}] (* Vladimir Joseph Stephan Orlovsky, Feb 19 2010 *)
    LinearRecurrence[{5, 8}, {0, 1}, 30] (* Vincenzo Librandi, Nov 13 2012 *)
  • PARI
    A015544(n)=imag((2+quadgen(57))^n) \\ M. F. Hasler, Mar 06 2009
    
  • PARI
    x='x+O('x^30); concat([0], Vec(x/(1 - 5*x - 8*x^2))) \\ G. C. Greubel, Jan 01 2018
  • Sage
    [lucas_number1(n,5,-8) for n in range(0, 21)] # Zerinvary Lajos, Apr 24 2009
    

Formula

a(n) = 5*a(n-1) + 8*a(n-2).
G.f.: x/(1 - 5*x - 8*x^2). - M. F. Hasler, Mar 06 2009

Extensions

More precise definition by M. F. Hasler, Mar 06 2009

A085504 Horadam sequence (0,1,9,3).

Original entry on oeis.org

0, 1, 18, 81, 405, 1944, 9477, 45927, 223074, 1082565, 5255361, 25509168, 123825753, 601059771, 2917611090, 14162371209, 68745613437, 333698181192, 1619805064509, 7862698824255, 38166342053346, 185263315578333, 899287025215113, 4365230915850336
Offset: 0

Views

Author

Ross La Haye, Aug 18 2003

Keywords

Comments

Lim_{n->infinity} a(n)/a(n-1) = (3/2)*(1 + sqrt(5)), which can also be written as phi^2 + 2*phi - 1, phi^3 + phi - 1, phi + sqrt(5) + 1, 3*phi, 3*phi^2 - 3, phi^4 - 2 and lim_{n->infinity} (3/2)*(1 + Lucas(n)/Fibonacci(n)).

Examples

			a(4) = 405 because a(3) = 81, a(2) = 18, s = 3, r = 9 and (3 * 81) + (9 * 18) = 405.
		

Crossrefs

Essentially the same as A122069 and A099012.

Programs

  • Mathematica
    Join[{0,1},LinearRecurrence[{3,9},{18,81},30]] (* or *) CoefficientList[ Series[x (1+15x+18x^2)/(1-3x-9x^2),{x,0,30}],x] (* Harvey P. Dale, Nov 24 2012 *)

Formula

a(n) = s*a(n-1) + r*a(n-2); for n > 3, where a(0) = 0, a(1) = 1, a(2) = 18, a(4) = 81, s = 3, r = 9.
G.f.: x*(1+15*x+18*x^2)/(1-3*x-9*x^2). [Colin Barker, Jun 20 2012]

Extensions

First formula corrected and more terms from Harvey P. Dale, Nov 24 2012

A138041 a(1) = 1, a(2) = 10; for n>2, a(n+1) = 4*a(n) + 6*a(n-1). Also a(n) = upper left term in the 2 X 2 matrix [1,3; 3,3].

Original entry on oeis.org

1, 10, 46, 244, 1252, 6472, 33400, 172432, 890128, 4595104, 23721184, 122455360, 632148544, 3263326336, 16846196608, 86964744448, 448936157440, 2317533096448, 11963749330432, 61760195900416, 318823279584256
Offset: 1

Views

Author

Gary W. Adamson, Mar 02 2008

Keywords

Examples

			a(4) = 244 = 4*46 + 6*10 = 4*a(3) + 6*a(2).
a(4) = 244 = upper left term in [1,3; 3,3]^4.
		

Programs

  • Mathematica
    a = {1, 10}; Do[AppendTo[a, 4*a[[ -1]] + 6*a[[ -2]]], {25}]; a (* Stefan Steinerberger *)
    LinearRecurrence[{4,6},{1,10},30] (* Harvey P. Dale, Mar 09 2014 *)

Formula

a(n)/a(n-1) tends to (2 + sqrt(10)) = 5.16227766... (a root of x^2 - 4*x - 6 and an eigenvalue of the matrix).
a(n) mod 9 == 1.
O.g.f.: -x*(1+6*x)/(-1+4*x+6*x^2). a(n) = A085939(n)+6*A085939(n-1). - R. J. Mathar, Mar 03 2008
From the characteristic polynomial of the matrix we get g.f.: (6*x + 1)/(-6*x^2 - 4*x + 1), with roots a=-(2+sqrt(10))/6, b=-(2-sqrt(10))/6. Let A=3+3*sqrt(10)/10 and B=3-3*sqrt(10)/10. Then a(n) = (A*(1/a)^n + B*(1/b)^n)/6. - Lambert Herrgesell (zero815(AT)googlemail.com), Apr 04 2008

Extensions

More terms from Stefan Steinerberger and R. J. Mathar, Mar 02 2008
Definition corrected by Paolo P. Lava, Jun 03 2008

A206800 Riordan array (1/(1-3*x+x^2), x*(1-x)/(1-3*x+x^2)).

Original entry on oeis.org

1, 3, 1, 8, 5, 1, 21, 19, 7, 1, 55, 65, 34, 9, 1, 144, 210, 141, 53, 11, 1, 377, 654, 534, 257, 76, 13, 1, 987, 1985, 1905, 1111, 421, 103, 15, 1, 2584, 5911, 6512, 4447, 2041, 641, 134, 17, 1, 6765, 17345, 21557, 16837, 9038, 3440, 925, 169, 19, 1
Offset: 0

Views

Author

Philippe Deléham, Feb 12 2012

Keywords

Examples

			Triangle begins :
1
3, 1
8, 5, 1
21, 19, 7, 1
55, 65, 34, 9, 1
144, 210, 141, 53, 11, 1
377, 654, 534, 257, 76, 13, 1
987, 1985, 1905, 1111, 421, 103, 15, 1
2584, 5911, 6512, 4447, 2041, 641, 134, 17, 1
6765, 17345, 21557, 16837, 9038, 3440, 925, 169, 19, 1
Triangle (0,3,-1/3,1/3,0,0,0,0,0,...) DELTA (1,0,-1/3,1/3,0,0,0,0,...) begins :
1
0, 1
0, 3, 1
0, 8, 5, 1
0, 21, 19, 7, 1
0, 55, 65, 34, 9, 1...
		

References

  • Subtriangle of the triangle given by (0, 3, -1/3, 1/3, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, -1/3, 1/3, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.
  • Antidiagonal sums are A072264(n).

Crossrefs

Formula

T(n,k) = 3*T(n-1,k) + T(n-1,k-1) - T(n-2,k) - T(n-2,k-1).
G.f.: 1/(1-(y+3)*x+(y+1)*x^2).
Sum_{k, 0<=k<=n} T(n,k)*x^k = (-1)^n* A015587(n+1), (-1)^n*A190953(n+1), (-1)^n*A015566(n+1), (-1)*A189800(n+1), (-1)^n*A015541(n+1), (-1)^n*A085939(n+1), (-1)^n*A015523(n+1), (-1)^n*A063727(n), (-1)^n*A006130(n), A077957(n), A000045(n+1), A000079(n), A001906(n+1), A007070(n), A116415(n), A084326(n+1), A190974(n+1), A190978(n+1), A190984(n+1), A190990(n+1), A190872(n) for x = -12, -11, -10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8 respectively.

A208459 Triangle T_x = T(n,k) given by (0, 1/x, 1-1/x, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (x, 1/x-1, -1/x, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938, for x = 0.

Original entry on oeis.org

1, 0, 0, 0, 1, 1, 0, 1, 0, -1, 0, 1, 0, 1, 2, 0, 1, 0, 2, 0, -3, 0, 1, 0, 3, -1, 0, 5, 0, 1, 0, 4, -2, 3, 2, -8, 0, 1, 0, 5, -3, 7, -2, -5, 13, 0, 1, 0, 6, -4, 12, -8, 2, 12, -21, 0, 1, 0, 7, -5, 18, -16, 15, 3, -25, 34
Offset: 0

Views

Author

Philippe Deléham, Feb 27 2012

Keywords

Comments

Triangle T_x : T_1 = A103631, T_2 = A208343, T_3 = A208345.

Examples

			Triangle begins :
1
0, 0
0, 1, 1
0, 1, 0, -1
0, 1, 0, 1, 2
0, 1, 0, 2, 0, -3
0, 1, 0, 3, -1, 0, 5
0, 1, 0, 4, -2, 3, 2, -8
0, 1, 0, 5, -3, 7, -2, -5, 13
0, 1, 0, 6, -4, 12, -8, 2, 12, -21
0, 1, 0, 7, -5, 18, -16, 15, 3, -25, 34
		

Crossrefs

Cf. A103631, A208343, A208345, A000045 (Fibonacci)

Formula

T(n,k) = T(n-1,k) - T(n-1,k-1) + T(n-2,k-1) + T(n-2,k-2) with T(0,0) = 1 T(1,0) = 0, T(1,1) = 0, T(n,k) = 0 if k<0 or if k>n.
G.f.: (1-x+y*x)/(1-x+y*x- y^2*x^2-y*x^2).
Sum_{k, 0<=k<=n} T(n,k)*x^k = 12*A015548(n-1), 6*A085939(n-1), A106434(n), A000007(n), A000007(n), A077957(n), (-1)^n*A102901(n) for x = -4, -3, -2, -1, 0, 1, 2 respectively.
Sm_{k, 0<=k<=n} T(n,k)*x^(n-k) = A000007(n), A034834(n-1), A077957(n), A052533(n), (-1)^n*A086344(n) for x = -1, 0, 1, 2, 3 respectively.
Previous Showing 11-15 of 15 results.