cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 31 results. Next

A190471 Numbers with prime factorization p^2*q^4*r^4 where p, q, and r are distinct primes.

Original entry on oeis.org

32400, 63504, 90000, 156816, 202500, 219024, 345744, 374544, 467856, 490000, 685584, 777924, 960400, 1089936, 1210000, 1245456, 1690000, 1774224, 2108304, 2178576, 2396304, 2480625, 2862864, 2890000, 3610000, 3640464, 4112784, 4511376
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_]:=Sort[Last/@FactorInteger[n]]=={2,4,4}; Select[Range[3500000],f] (*and*) lst={}; Do[If[k!=n && k!=m && n!=m, AppendTo[lst, Prime[k]^2*Prime[n]^4*Prime[m]^4]], {n,33}, {m,33}, {k,33}]; Take[Union@lst,60]
  • PARI
    list(lim)=my(v=List(),t1,t2);forprime(p=2, (lim\4)^(1/8), t1=p^4;forprime(q=p+1, (lim\t1)^(1/4), t2=t1*q^4;forprime(r=2, sqrt(lim\t2), if(p==r||q==r, next);listput(v,t2*r^2)))); Set(v) \\ Charles R Greathouse IV, Aug 25 2016

Formula

Sum_{n>=1} 1/a(n) = P(2)*P(4)^2/2 - P(2)*P(8)/2 - P(4)*P(6) + P(10) = 0.00010139253539568059065..., where P is the prime zeta function. - Amiram Eldar, Mar 07 2024

A085995 Decimal expansion of the prime zeta modulo function at 6 for primes of the form 4k+3.

Original entry on oeis.org

0, 0, 1, 3, 8, 0, 8, 3, 5, 8, 8, 6, 9, 7, 1, 7, 3, 9, 1, 6, 3, 0, 3, 1, 8, 5, 4, 1, 2, 8, 0, 1, 5, 8, 2, 2, 6, 1, 0, 6, 0, 1, 3, 9, 6, 3, 2, 7, 5, 6, 5, 4, 2, 9, 6, 8, 0, 2, 6, 4, 8, 0, 2, 5, 7, 8, 5, 3, 0, 7, 5, 2, 2, 2, 7, 0, 7, 4, 6, 9, 1, 3, 4, 7, 9, 1, 5, 6, 0, 4, 2, 5, 1, 7, 1, 0, 1, 6, 6, 0, 1, 6, 8, 7, 8
Offset: 0

Views

Author

Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jul 06 2003

Keywords

Examples

			0.0013808358869717391630318541280158226106013963275654296802648025785307522...
		

Crossrefs

Cf. A002145 (primes 4k+3), A001014 (n^6), A085966 (PrimeZeta(6)).
Cf. A085991 - A085998 (Zeta_R(2..9): same for 1/p^2, ..., 1/p^9), A086036 (same for primes 4k+1), A343626 (for primes 3k+1), A343616 (for primes 3k+2).

Programs

  • Mathematica
    b[x_] = (1 - 2^(-x))*(Zeta[x]/DirichletBeta[x]); $MaxExtraPrecision = 250; m = 40; Join[{0, 0}, RealDigits[(1/2)*NSum[MoebiusMu[2n + 1]* Log[b[(2n + 1)*6]]/(2n + 1), {n, 0, m}, AccuracyGoal -> 120, NSumTerms -> m, PrecisionGoal -> 120, WorkingPrecision -> 120] ][[1]]][[1 ;; 105]] (* Jean-François Alcover, Jun 22 2011, updated Mar 14 2018 *)
  • PARI
    A085995_upto(N=100)={localprec(N+3); digits((PrimeZeta43(6)+1)\.1^N)[^1]} \\ see A085991 for the PrimeZeta43 function. - M. F. Hasler, Apr 25 2021

Formula

Zeta_R(6) = Sum_{p in A002145} 1/p^6 where A002145 = {primes p == 3 (mod 4)},
= (1/2)*Sum_{n >= 0} möbius(2*n+1)*log(b((2*n+1)*6))/(2*n+1),
where b(x) = (1-2^(-x))*zeta(x)/L(x) and L(x) is the Dirichlet Beta function.

Extensions

Edited by M. F. Hasler, Apr 25 2021

A162144 Products of cubes of 3 distinct primes.

Original entry on oeis.org

27000, 74088, 287496, 343000, 474552, 1061208, 1157625, 1331000, 1481544, 2197000, 2628072, 3652264, 4492125, 4913000, 5268024, 6028568, 6434856, 6859000, 7414875, 10941048, 12167000, 12326391, 13481272, 14886936, 16581375, 17173512, 18821096
Offset: 1

Views

Author

Keywords

Comments

Numbers of the form p^3*q^3*r^3 where p, q, r are three distinct primes.
The cubic analog of A085986 (squares of 2 distinct primes).

Examples

			27000 = 2^3*3^3*5^3. 74088 = 2^3*3^3*7^3. 287496 = 2^3*3^3*11^3.
		

Crossrefs

Programs

  • Mathematica
    fQ[n_]:=Last/@FactorInteger[n]=={1,1,1}; Select[Range[1000], fQ]^3
  • Python
    from math import isqrt
    from sympy import primepi, primerange, integer_nthroot
    def A162144(n):
        def f(x): return int(n+x-sum(primepi(x//(k*m))-b for a,k in enumerate(primerange(integer_nthroot(x,3)[0]+1),1) for b,m in enumerate(primerange(k+1,isqrt(x//k)+1),a+1)))
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        return bisection(f)**3 # Chai Wah Wu, Aug 30 2024

Formula

a(n) = (A007304(n))^3.
A000005(a(n)) = 64.
Sum_{n>=1} 1/a(n) = (P(3)^3 + 2*P(9) - 3*P(3)*P(6))/6 = (A085541^3 + 2*A085969 - 3*A085541*A085966)/6 = 0.0000661486..., where P is the prime zeta function. - Amiram Eldar, Oct 30 2020

Extensions

Edited by R. J. Mathar, Aug 14 2009

A190469 Numbers with prime factorization p^2*q^2*r^6 where p, q, and r are distinct primes.

Original entry on oeis.org

14400, 28224, 69696, 72900, 78400, 97344, 142884, 166464, 193600, 207936, 270400, 304704, 352836, 379456, 462400, 484416, 492804, 529984, 553536, 562500, 577600, 788544, 842724, 846400, 893025, 906304, 968256, 1052676, 1065024, 1132096
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_]:=Sort[Last/@FactorInteger[n]]=={2,2,6}; Select[Range[1600000],f]
  • PARI
    list(lim)=my(v=List(),t1,t2);forprime(p=2, (lim\36)^(1/6), t1=p^6;forprime(q=2, sqrt(lim\t1), if(p==q, next);t2=t1*q^2;forprime(r=q+1, sqrt(lim\t2), if(p==r,next);listput(v,t2*r^2)))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 20 2011

Formula

Sum_{n>=1} 1/a(n) = P(2)^2*P(6)/2 - P(2)*P(8)/2 - P(4)*P(6)/2 - P(2)*P(8) + P(10) = 0.00024535673248061231753..., where P is the prime zeta function. - Amiram Eldar, Mar 07 2024

A343626 Decimal expansion of the Prime Zeta modulo function P_{3,1}(6) = Sum 1/p^6 over primes p == 1 (mod 3).

Original entry on oeis.org

0, 0, 0, 0, 0, 8, 7, 3, 0, 0, 1, 1, 0, 2, 3, 1, 9, 8, 1, 6, 7, 0, 1, 2, 0, 4, 2, 7, 7, 9, 1, 4, 5, 2, 3, 1, 9, 4, 9, 5, 6, 1, 0, 7, 9, 7, 6, 4, 5, 3, 9, 1, 8, 3, 6, 9, 8, 9, 7, 1, 7, 7, 1, 3, 8, 1, 3, 6, 2, 9, 8, 3, 2, 9, 4, 5, 3, 8, 7, 6, 4, 9, 6, 9, 9, 3, 6, 1, 8, 5, 8, 6, 2, 3, 2, 9, 3, 3, 4, 5
Offset: 0

Views

Author

M. F. Hasler, Apr 23 2021

Keywords

Comments

The Prime Zeta modulo function at 6 for primes of the form 3k+1 is Sum_{primes in A002476} 1/p^6 = 1/7^6 + 1/13^6 + 1/19^6 + 1/31^6 + ...
The complementary Sum_{primes in A003627} 1/p^6 is given by P_{3,2}(6) = A085966 - 1/3^6 - (this value here) = 0.015689614727130461563527666... = A343606.

Examples

			P_{3,1}(6) = 8.7300110231981670120427791452319495610797645391837...*10^-8
		

Crossrefs

Cf. A175645, A343624 - A343629 (P_{3,1}(3..9): same for 1/p^n, n=3..9), A343606 (P_{3,2}(6): same for p==2 (mod 3)), A086036 (P_{4,1}(6): same for p==1 (mod 4)).
Cf. A085966 (PrimeZeta(6)), A002476 (primes of the form 3k+1).

Programs

  • Mathematica
    With[{s=6}, Do[Print[N[1/2 * Sum[(MoebiusMu[2*n + 1]/(2*n + 1)) * Log[(Zeta[s + 2*n*s]*(Zeta[s + 2*n*s, 1/6] - Zeta[s + 2*n*s, 5/6])) / ((1 + 2^(s + 2*n*s))*(1 + 3^(s + 2*n*s)) * Zeta[2*(1 + 2*n)*s])], {n, 0, m}], 120]], {m, 100, 500, 100}]] (* adopted from Vaclav Kotesovec's code in A175645 *)
  • PARI
    s=0; forprimestep(p=1, 1e8, 3, s+=1./p^6); s \\ For illustration: primes up to 10^N give 5N+2 (= 42 for N=8) correct digits.
    
  • PARI
    A343626_upto(N=100)={localprec(N+5);digits((PrimeZeta31(6)+1)\.1^N)[^1]} \\ cf. A175644 for PrimeZeta31

A131653 Decimal expansion of the sum of the reciprocals of squared 3-almost primes.

Original entry on oeis.org

0, 3, 8, 5, 1, 6, 1, 9, 2, 9, 8, 2, 6, 9, 4, 6, 4, 0, 9, 1, 2, 8, 3, 7, 9, 2, 2, 6, 2, 8, 0, 6, 0, 3, 9, 5, 4, 3, 8, 9, 0, 0, 1, 6, 7, 4, 7, 8, 3, 8, 1, 5, 7, 1, 9, 3, 7, 1, 9, 1, 5, 5, 8, 9, 2, 2, 3, 7, 5, 5, 3, 7, 8, 3, 4, 5, 9, 1, 6, 6, 1, 3, 9, 3, 0, 4, 7, 4, 1, 4, 7, 6, 2, 0, 4, 9, 4, 7, 1, 5, 0, 8, 4, 4, 4
Offset: 0

Views

Author

R. J. Mathar, Sep 10 2007, Mar 07 2008

Keywords

Comments

zeta(2) = A013661 is 1 plus a sum over inverse squares of k-almost primes, k=1 to infinity, where A085548 represents k=1, A117543 represents k=2 and this constant here represents k=3.

Examples

			0.038516192982694640912837922628060395438900167478381571937...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[PrimeZetaP[2]^3/6 + PrimeZetaP[6]/3 + PrimeZetaP[2]*PrimeZetaP[4]/2, 10, 120, -1][[1]] (* Amiram Eldar, Jun 25 2023 *)

Formula

Equals A085548^3 / 6 + A085966 / 3 + A085548 * A085964 / 2.
Equals Sum_{i>=1} 1/A000290(A014612(i)).

Extensions

a(104) corrected by Amiram Eldar, Jun 25 2023

A216426 Numbers of the form a^2*b^3, where a != b and a, b > 1.

Original entry on oeis.org

72, 108, 128, 200, 256, 288, 392, 432, 500, 512, 576, 648, 675, 800, 864, 968, 972, 1125, 1152, 1323, 1352, 1372, 1568, 1600, 1728, 1800, 1944, 2000, 2048, 2187, 2304, 2312, 2592, 2700, 2888, 2916, 3087, 3136, 3200, 3267, 3456, 3528, 3872, 3888, 4000
Offset: 1

Views

Author

V. Raman, Sep 07 2012

Keywords

Comments

Terms of A216427 that are not 5th powers of squarefree numbers (A113850) and not 10th powers of primes (A030629). - Amiram Eldar, Feb 07 2023

Crossrefs

Cf. A143610.
Subsequence of A216427. - Zak Seidov, Jan 03 2014

Programs

  • Mathematica
    With[{upto=4000},Select[Union[Flatten[{#[[1]]^2 #[[2]]^3,#[[2]]^2 #[[1]]^3}& /@ Subsets[Range[2,Surd[upto,2]],{2}]]],#<=upto&]](* Harvey P. Dale, Jan 04 2014 *)
    pMx = 25; mx = 2^3 pMx^2; t = Flatten[Table[If[a != b, a^2 b^3, 0], {a, 2, mx^(1/2)}, {b, 2, mx^(1/3)}]]; Union[Select[t, 0 < # <= mx &]] (* T. D. Noe, Jan 02 2014 *)
  • PARI
    list(lim)=my(v=List()); for(b=2, sqrtnint(lim\4,3), for(a=2, sqrtint(lim\b^3), if(a!=b, listput(v, a^2*b^3)))); Set(v) \\ Charles R Greathouse IV, Jan 02 2014
    
  • Python
    from math import isqrt
    from sympy import integer_nthroot, mobius, primepi
    def A216426(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x):
            j, b, a, d = isqrt(x), integer_nthroot(x,6)[0], integer_nthroot(x,5)[0], integer_nthroot(x,10)[0]
            l, c = 0, n+x-2+primepi(b)+sum(mobius(k)*(j//k**3) for k in range(d+1, b+1))+primepi(d)+sum(mobius(k)*(a//k**2+j//k**3) for k in range(1, d+1))
            while j>1:
                k2 = integer_nthroot(x//j**2,3)[0]+1
                w = sum(mobius(k)*((k2-1)//k**2) for k in range(1, isqrt(k2-1)+1))
                c -= j*(w-l)
                l, j = w, isqrt(x//k2**3)
            return c+l
        return bisection(f,n,n) # Chai Wah Wu, Sep 13 2024

Formula

Sum_{n>=1} 1/a(n) = 2 + ((zeta(2)-1)*(zeta(3)-1)-1)/zeta(6) - zeta(5)/zeta(10) - P(6) - P(10) = 0.09117811499514578262..., where P(s) is the prime zeta function. - Amiram Eldar, Feb 07 2023

Extensions

Name corrected by Charles R Greathouse IV, Jan 02 2014

A272190 Either 6th power of a prime, or product of the square of two different primes.

Original entry on oeis.org

36, 64, 100, 196, 225, 441, 484, 676, 729, 1089, 1156, 1225, 1444, 1521, 2116, 2601, 3025, 3249, 3364, 3844, 4225, 4761, 5476, 5929, 6724, 7225, 7396, 7569, 8281, 8649, 8836, 9025, 11236, 12321, 13225, 13924, 14161, 14884, 15129, 15625, 16641, 17689, 17956, 19881
Offset: 1

Views

Author

Paolo P. Lava, Apr 22 2016

Keywords

Comments

Numbers such that the sum of the number of divisors of their aliquot parts is three times the number of their divisors.

Examples

			36 = 2^2 * 3^2;  64 = 2^6.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q) local a,k,n;  for n from 2 to q do a:=sort([op(divisors(n))]);
    if 3*tau(n)= add(tau(a[k]),k=1..nops(a)-1) then print(n); fi; od; end: P(10^7);
  • Mathematica
    Select[Range[20000], MemberQ[{{6}, {2, 2}}, FactorInteger[#][[;; , 2]]] &] (* Amiram Eldar, Oct 03 2023 *)
  • PARI
    isok(n) = 3*numdiv(n) == sumdiv(n, d, (n!=d)*numdiv(d)); \\ Michel Marcus, Apr 22 2016
    
  • PARI
    is(n) = {my(e = factor(n)[, 2]~); e == [6] || e == [2, 2];} \\ Amiram Eldar, Oct 03 2023

Formula

Sum_{n>=1} 1/a(n) = (P(2)^2 - P(4))/2 + P(6) = (A085548^2 - A085964)/2 + A085966 = 0.080837..., where P is the prime zeta function. - Amiram Eldar, Oct 03 2023

A343616 Decimal expansion of P_{3,2}(6) = Sum 1/p^6 over primes == 2 (mod 3).

Original entry on oeis.org

0, 1, 5, 6, 8, 9, 6, 1, 4, 7, 2, 7, 1, 3, 0, 4, 6, 1, 5, 6, 3, 5, 2, 7, 6, 6, 6, 1, 5, 2, 2, 0, 9, 0, 9, 1, 8, 1, 4, 2, 0, 8, 6, 7, 5, 5, 5, 3, 0, 7, 7, 7, 6, 3, 3, 6, 6, 1, 5, 3, 1, 8, 8, 6, 7, 6, 4, 5, 7, 2, 3, 3, 5, 6, 2, 3, 7, 3, 0, 4, 0, 7, 0, 0, 5, 5, 2, 4, 2, 2, 1, 0, 3, 3, 6, 8, 4, 3, 5, 2
Offset: 0

Views

Author

M. F. Hasler, Apr 25 2021

Keywords

Comments

The prime zeta modulo function P_{m,r}(s) = Sum_{primes p == r (mod m)} 1/p^s generalizes the prime zeta function P(s) = Sum_{primes p} 1/p^s.

Examples

			0.015689614727130461563527666152209091814208675553077763366153188676457...
		

Crossrefs

Cf. A003627 (primes 3k-1), A001014 (n^6), A085966 (PrimeZeta(6)), A021733 (1/3^6).
Cf. A343612 - A343619 (P_{3,2}(s): analog for 1/p^s, s = 2 .. 9).
Cf. A343626 (for primes 3k+1), A086036 (for primes 4k+1), A085995 (for primes 4k+3).

Programs

  • PARI
    A343616_upto(N=100)={localprec(N+5); digits((PrimeZeta32(6)+1)\.1^N)[^1]} \\ see A343612 for the function PrimeZeta32

Formula

P_{3,2}(6) = Sum_{p in A003627} 1/p^6 = P(6) - 1/3^6 - P_{3,1}(6).

A126226 Continued fraction of Product_{primes p} ((p-1)/p)^(1/p).

Original entry on oeis.org

0, 1, 1, 3, 1, 2, 11, 1, 1, 4, 1, 9, 2, 2, 1, 1, 4, 4, 2, 2, 2, 1, 14, 1, 2, 2, 2, 7, 2, 2, 1, 1, 4, 2, 4, 1, 11, 7, 2, 8, 32, 2, 1, 293, 2, 145, 1, 2, 1, 21, 1, 1, 3, 1, 1, 8, 8, 5, 2, 3, 4, 3, 1, 3, 1, 1, 1, 1, 3, 2, 1, 3, 1, 2, 2, 1, 2, 19, 3, 2, 1, 15, 1, 2, 1, 2, 5, 3, 1, 1, 1, 38, 1, 10, 1, 2, 1, 80, 1
Offset: 0

Views

Author

Martin Fuller, Dec 20 2006

Keywords

Comments

This might be interpreted as the expected value of phi(n)/n for very large n. - David W. Wilson, Dec 05 2006

Examples

			0.55986561693237348...
		

Crossrefs

Programs

  • PARI
    contfrac(exp(-suminf(m=2,log(zeta(m))*sumdiv(m,k,if(k
    				
Previous Showing 21-30 of 31 results. Next