A086026
a(n) = Sum_{i=1..n} C(i+4,5)^3.
Original entry on oeis.org
1, 217, 9478, 185094, 2185470, 18188478, 116799606, 613592694, 2745339597, 10769363605, 37850444632, 121189368664, 358136205336, 987118431768, 2559344776920, 6286103520984, 14712254089533, 32974344717237, 71073599975686, 147860902015750, 297836101312750
Offset: 1
a(3) = C(8,6)^2*(1 + 279*C(3,1) + 681*C(3,2) + 504*C(3,3))/280 = 9478. - _Yahia Kahloune_, Dec 22 2013
- G. C. Greubel, Table of n, a(n) for n = 1..5000
- Feihu Liu, Guoce Xin, and Chen Zhang, Ehrhart Polynomials of Order Polytopes: Interpreting Combinatorial Sequences on the OEIS, arXiv:2412.18744 [math.CO], 2024. See p. 13.
- Index entries for linear recurrences with constant coefficients, signature (17,-136,680,-2380,6188,-12376, 19448,-24310,24310,-19448,12376,-6188,2380,-680,136,-17,1).
-
[(n^2/580608000)*(57600 + 4583040*n + 28668304*n^2 + 80791200*n^3 + 133134680*n^4 + 142979760*n^5 + 105929613*n^6 + 55881000*n^7 + 21323540* n^8 + 5904360*n^9 + 1175062*n^10 + 163800*n^11 + 15180*n^12 + 840*n^13 + 21*n^14): n in [1..30]]; // G. C. Greubel, Nov 22 2017
-
A086026 := proc(n)
add( binomial(i+4,5)^3,i=1..n) ;
end proc:
seq(A086026(n),n=1..30) ; # R. J. Mathar, Dec 22 2013
-
Table[Sum[Binomial[i + 4, 5]^3, {i, n}], {n, 30}] (* Wesley Ivan Hurt, Dec 22 2013 *)
-
a(n) = sum(i=1, n, binomial(i+4, 5)^3); \\ Michel Marcus, Dec 22 2013
A086027
a(n) = Sum_{i=1..n} binomial(i+5,6)^2.
Original entry on oeis.org
1, 50, 834, 7890, 51990, 265434, 1119210, 4063866, 13081875, 38131900, 102259964, 255425340, 600047436, 1336192860, 2838530460, 5783112156, 11350211925, 21540508734, 39656591950, 71021001950, 124026854850, 211648774950, 353581802550, 579225802950, 931794553575
Offset: 1
- T. D. Noe, Table of n, a(n) for n = 1..1000
- John Engbers and Christopher Stocker, Two Combinatorial Proofs of Identities Involving Sums of Powers of Binomial Coefficients, Integers 16 (2016), #A58.
- Feihu Liu, Guoce Xin, and Chen Zhang, Ehrhart Polynomials of Order Polytopes: Interpreting Combinatorial Sequences on the OEIS, arXiv:2412.18744 [math.CO], 2024. See p. 13..
- Index entries for linear recurrences with constant coefficients, signature (14, -91, 364, -1001, 2002, -3003, 3432, -3003, 2002, -1001, 364, -91, 14, -1).
Cf.
A087127,
A024166,
A085438,
A085439,
A085440,
A085441,
A085442,
A086020,
A086021,
A086022,
A086023,
A086024,
A086025,
A086026,
A086028,
A086029,
A086030.
-
List([1..30], n-> Sum([1..n], j-> Binomial(j+5,6)^2)); # G. C. Greubel, Aug 27 2019
-
[n*(n+1)*(n+2)*(n+3)*(n+4)*(n+5)*(n+6)*(77*n^6 +1386*n^5 +9380*n^4 + 29400*n^3 +41783*n^2 +20874*n +60)/518918400: n in [1..30]]; // G. C. Greubel, Nov 22 2017
-
A086027:=n->sum(binomial(i+5,6)^2, i=1..n); seq(A086027(k), k=1..50); # Wesley Ivan Hurt, Oct 24 2013
-
Table[Sum[Binomial[k + 5, 6]^2, {k, 1, n}], {n, 50}] (* Wesley Ivan Hurt, Oct 24 2013 *)
-
vector(30, n, sum(i=1,n, binomial(i+5,6)^2) ) \\ G. C. Greubel, Nov 22 2017
-
[sum(binomial(j+5,6)^2 for j in (1..n)) for n in (1..30)] # G. C. Greubel, Aug 27 2019
A086028
a(n) = Sum_{i=1..n} C(i+5,6)^3.
Original entry on oeis.org
1, 344, 22296, 615000, 9876000, 108487128, 897376152, 5950405848, 33031486875, 158406862000, 671944398512, 2567519091888, 8965083682032, 28938181326000, 87168786702000, 246953567853744, 662331582918141, 1691011474896264, 4129363811437000, 9684000822437000
Offset: 1
a(4) = Sum_{i=1..4} C(i+5,6)^3 = C(6,6)^3 + C(7,6)^3 + C(8,6)^3 + C(9,6)^3 = 1^3 + 7^3 + 28^3 + 84^3 = 615000.
- G. C. Greubel, Table of n, a(n) for n = 1..5000
- Feihu Liu, Guoce Xin, and Chen Zhang, Ehrhart Polynomials of Order Polytopes: Interpreting Combinatorial Sequences on the OEIS, arXiv:2412.18744 [math.CO], 2024. See p. 13.
- Index entries for linear recurrences with constant coefficients, signature (20, -190, 1140, -4845, 15504, -38760, 77520, -125970, 167960, -184756, 167960, -125970, 77520, -38760, 15504, -4845, 1140, -190, 20, -1).
-
[(n/120679663104000)*(1 + n)*(2 + n)*(3 + n)*(4 + n)*(5 + n)*(6 + n)*(-864000 + 2116800*n + 772737840*n^2 + 3398930472*n^3 + 6406454992 *n^4 + 6701566410*n^5 + 4302755765*n^6 + 1780394616*n^7 + 484074591*n^8 + 85975890*n^9 + 9604595*n^10 + 612612*n^11 + 17017*n^12): n in [1..30]]; // G. C. Greubel, Nov 22 2017
-
A086028 := proc(n)
add( binomial(i+5,6)^3,i=1..n) ;
end proc:
seq(A086028(n),n=1..30) ; # R. J. Mathar, Dec 22 2013
-
Table[Sum[Binomial[k+5,6]^3, {k,1,n}], {n,1,30}] (* G. C. Greubel, Nov 22 2017 *)
-
for(n=1, 30, print1(sum(k=1,n, binomial(k+5,6)^3), ", ")) \\ G. C. Greubel, Nov 22 2017
A085439
a(n) = Sum_{i=1..n} binomial(i+1,2)^4.
Original entry on oeis.org
1, 82, 1378, 11378, 62003, 256484, 871140, 2550756, 6651381, 15802006, 34776742, 71791798, 140366759, 261917384, 469277384, 811379400, 1359360681, 2214396762, 3517606762, 5462416762, 8309813083, 12406965164, 18209748140, 26309748140, 37466388765, 52644875166
Offset: 1
a(15) = (2520*(15^9) +22680*(15^8) +79920*(15^7) +136080*(15^6) +107352*(15^5) +22680*(15^4) -10080*(15^3) +1728*15)/9! = 469277384.
- G. C. Greubel, Table of n, a(n) for n = 1..5000
- Feihu Liu, Guoce Xin, and Chen Zhang, Ehrhart Polynomials of Order Polytopes: Interpreting Combinatorial Sequences on the OEIS, arXiv:2412.18744 [math.CO], 2024. See p. 13.
- Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1).
Cf.
A000292,
A087127,
A024166,
A024166,
A085438,
A085440,
A085441,
A085442,
A000332,
A086020,
A086021,
A086022,
A000389,
A086023,
A086024,
A000579,
A086025,
A086026,
A000580,
A086027,
A086028,
A027555,
A086029,
A086030.
-
[(2520*n^9 +22680*n^8 +79920*n^7 +136080*n^6 +107352*n^5 +22680*n^4 -10080*n^3 +1728*n)/Factorial(9): n in [1..30]]; // G. C. Greubel, Nov 22 2017
-
Table[(2520*(n^9) + 22680*(n^8) + 79920*(n^7) + 136080*(n^6) + 107352*(n^5) + 22680*(n^4) - 10080*(n^3) + 1728*n)/9!, {n, 1, 50}] (* G. C. Greubel, Nov 22 2017 *)
-
Vec(x*(x^6+72*x^5+603*x^4+1168*x^3+603*x^2+72*x+1)/(x-1)^10 + O(x^100)) \\ Colin Barker, May 02 2014
-
a(n) = sum(i=1, n, binomial(i+1, 2)^4); \\ Michel Marcus, Nov 22 2017
A085440
a(n) = Sum_{i=1..n} binomial(i+1,2)^5.
Original entry on oeis.org
1, 244, 8020, 108020, 867395, 4951496, 22161864, 82628040, 267156165, 770440540, 2022773116, 4909947484, 11150268935, 23913084560, 48796284560, 95322158736, 179163294729, 325374464580, 572984364580, 981394464580, 1639143014731, 2675722491224, 4277290592600
Offset: 1
- Elisabeth Busser and Gilles Cohen, Neuro-Logies - "Chercher, jouer, trouver", La Recherche, April 1999, No. 319, page 97.
- T. D. Noe, Table of n, a(n) for n = 1..1000
- Feihu Liu, Guoce Xin, and Chen Zhang, Ehrhart Polynomials of Order Polytopes: Interpreting Combinatorial Sequences on the OEIS, arXiv:2412.18744 [math.CO], 2024. See p. 13.
- Index entries for linear recurrences with constant coefficients, signature (12,-66,220,-495,792,-924,792,-495,220,-66,12,-1).
Cf.
A000292,
A087127,
A024166,
A024166,
A085438,
A085439,
A085441,
A085442,
A000332,
A086020,
A086021,
A086022,
A000389,
A086023,
A086024,
A000579,
A086025,
A086026,
A000580,
A086027,
A086028,
A027555,
A086029,
A086030.
-
[(113400*n^11 +1247400*n^10 +5544000*n^9 +12474000*n^8 +14196600*n^7 +6237000*n^6 -831600*n^5 +1108800*n^3 -172800*n )/Factorial(11): n in [1..30]]; // G. C. Greubel, Nov 22 2017
-
Table[(113400*n^11 +1247400*n^10 +5544000*n^9 +12474000*n^8 +14196600*n^7 +6237000*n^6 -831600*n^5 +1108800*n^3 -172800*n)/11!, {n,1,50}] (* G. C. Greubel, Nov 22 2017 *)
-
for(n=1,30, print1(sum(k=1,n, binomial(k+1,2)^5), ", ")) \\ G. C. Greubel, Nov 22 2017
A085441
a(n) = Sum_{i=1..n} binomial(i+1,2)^6.
Original entry on oeis.org
1, 730, 47386, 1047386, 12438011, 98204132, 580094436, 2756876772, 11060642397, 38741283022, 121395233038, 346594833742, 914464085783, 2254559726408, 5240543726408, 11568062614344, 24395756421273, 49397866465794, 96443747465794, 182209868465794
Offset: 1
a(5) = C(7,3)*[191*106 + 450*(18*C(14,10) + 3851*C(13,10) + 61839*C(12,10) + 225352*C(11,10) + 225352*C(10,10))]/10010 = 12438011.
- T. D. Noe, Table of n, a(n) for n = 1..1000
- Feihu Liu, Guoce Xin, and Chen Zhang, Ehrhart Polynomials of Order Polytopes: Interpreting Combinatorial Sequences on the OEIS, arXiv:2412.18744 [math.CO], 2024. See p. 13.
- Index entries for linear recurrences with constant coefficients, signature (14,-91,364,-1001,2002,-3003,3432,-3003,2002,-1001,364,-91,14,-1).
Cf.
A000292,
A087127,
A024166,
A024166,
A085438,
A085439,
A085440,
A085442,
A000332,
A086020,
A086021,
A086022,
A000389,
A086023,
A086024,
A000579,
A086025,
A086026,
A000580,
A086027,
A086028,
A027555,
A086029,
A086030,
A234253.
-
[(n/960960)*(6112 - 40040*n^2 + 78078*n^4 + 15015*n^5 + 19305*n^6 + 225225*n^7 + 335335*n^8 + 225225*n^9 + 80535*n^10 + 15015*n^11 + 1155*n^12): n in [1..30]]; // G. C. Greubel, Nov 22 2017
-
f:= sum(binomial(1+i,2)^6,i=1..n):
seq(f, n=1..30); # Robert Israel, Nov 22 2017
-
Table[Sum[Binomial[i+1,2]^6,{i,n}],{n,20}] (* or *) LinearRecurrence[ {14,-91,364,-1001,2002,-3003,3432,-3003,2002,-1001,364,-91,14,-1},{1,730,47386,1047386,12438011, 98204132,580094436, 2756876772,11060642397, 38741283022,121395233038, 346594833742, 914464085783, 2254559726408},20] (* Harvey P. Dale, Jun 05 2017 *)
-
for(n=1,30, print1(sum(k=1,n, binomial(k+1,2)^6), ", ")) \\ G. C. Greubel, Nov 22 2017
A086022
a(n) = Sum_{i=1..n} C(i+2,3)^4.
Original entry on oeis.org
1, 257, 10257, 170257, 1670882, 11505378, 61292514, 268652514, 1009853139, 3352413139, 10042998755, 27598188771, 70457539396, 168802499396, 382616259396, 825980472132, 1707628231653, 3396588391653, 6525595601653, 12150082161653, 21987344308134, 38769279231910
Offset: 1
a(8) = C(11,4)*[-41*2793 + 350*(47*C(16,9) + 1749*C(15,9) + 9292*C(14,9) + 9292*C(13,9) + 1749*C(12,9) + 47*C(11,9))]/15015 = 268652514 .
- T. D. Noe, Table of n, a(n) for n = 1..1000
- Feihu Liu, Guoce Xin, and Chen Zhang, Ehrhart Polynomials of Order Polytopes: Interpreting Combinatorial Sequences on the OEIS, arXiv:2412.18744 [math.CO], 2024. See p. 13.
- Index entries for linear recurrences with constant coefficients, signature (14, -91, 364, -1001, 2002, -3003, 3432, -3003, 2002, -1001, 364, -91, 14, -1).
Cf.
A086020,
A086021,
A086023,
A086024,
A086025,
A086026,
A086027,
A086028,
A086029,
A086030,
A087127,
A024166,
A085438,
A085439,
A085440,
A085441,
A085442.
-
[(n/12972960)*(-8856 +60060*n^2 +165165*n^3 +841841*n^4 +2462460*n^5 +3709420*n^6 +3243240*n^7 +1756755*n^8 +600600*n^9 +126490*n^10 +15015*n^11 +770*n^12): n in [1..30]]; // G. C. Greubel, Nov 22 2017
-
Accumulate[Binomial[Range[3,30],3]^4] (* Harvey P. Dale, Oct 09 2016 *)
-
for(n=1,30, print1((n/12972960)*(-8856 + 60060*n^2 + 165165*n^3 + 841841*n^4 + 2462460*n^5 + 3709420*n^6 + 3243240*n^7 + 1756755*n^8 + 600600*n^9 + 126490*n^10 + 15015*n^11 + 770*n^12), ", ")) \\ G. C. Greubel, Nov 22 2017
A087107
This table shows the coefficients of combinatorial formulas needed for generating the sequential sums of p-th powers of tetrahedral numbers. The p-th row (p>=1) contains a(i,p) for i=1 to 3*p-2, where a(i,p) satisfies Sum_{i=1..n} C(i+2,3)^p = 4 * C(n+3,4) * Sum_{i=1..3*p-2} a(i,p) * C(n-1,i-1)/(i+3).
Original entry on oeis.org
1, 1, 3, 3, 1, 1, 15, 69, 147, 162, 90, 20, 1, 63, 873, 5191, 16620, 31560, 36750, 25830, 10080, 1680, 1, 255, 9489, 130767, 919602, 3832650, 10238000, 18244380, 21990360, 17745000, 9198000, 2772000, 369600, 1, 1023, 97953, 2903071, 40317780
Offset: 1
Row 3 contains 1,15,69,147,162,90,20, so Sum_{i=1..n} C(i+2,3)^3 = 4 * C(n+3,4) * [ a(1,3)/4 + a(2,3)*C(n-1,1)/5 + a(3,3)*C(n-1,2)/6 + ... + a(7,3)*C(n-1,6)/10 ] = 4 * C(n+3,4) * [ 1/4 + 15*C(n-1,1)/5 + 69*C(n-1,2)/6 + 147*C(n-1,3)/7 + 162*C(n-1,4)/8 + 90*C(n-1,5)/9 + 20*C(n-1,6)/10 ]. Cf. A086021 for more details.
From _Peter Bala_, Mar 11 2018: (Start)
Table begins
n=0 | 1
n=1 | 1 3 3 1
n=2 | 1 15 69 147 162 90 20
n=3 | 1 63 873 5191 16620 31560 36750 25830 10080 1680
...
Row 2: C(i+3,3)^2 = C(i,0) + 15*C(i,1) + 69*C(i,2) + 147*C(i,3) + 162*C(i,4) + 90*C(i,5) + 20*C(i,6). Hence, Sum_{i = 0..n-1} C(i+3,3)^2 = C(n,1) + 15*C(n,2) + 69*C(n,3) + 147*C(n,4) + 162*C(n,5) + 90*C(n,6) + 20*C(n,7). (End)
Cf.
A000292,
A024166,
A087127,
A024166,
A085438,
A085439,
A085440,
A085441,
A085442,
A000332,
A086020,
A086021,
A086022,
A087108,
A000389,
A086023,
A086024,
A087109,
A000579,
A086025,
A086026,
A087110,
A000580,
A086027,
A086028,
A087111,
A027555,
A086029,
A086030.
-
seq(seq(add( (-1)^(k-i)*binomial(k, i)*binomial(i+3, 3)^n, i= 0..k), k = 0..3*n), n = 0..8); # Peter Bala, Mar 11 2018
-
a[i_, p_] := Sum[Binomial[i - 1, 2*k - 2]*Binomial[i - 2*k + 4, i - 2*k + 1]^(p - 1) - Binomial[i - 1, 2*k - 1]*Binomial[i - 2*k + 3, i - 2*k]^(p - 1), {k, 1, (2*i + 1 + (-1)^(i - 1))/4}]; Table[If[p == 1, 1, a[i, p]], {p, 1, 10}, {i, 1, 3*p - 2}]//Flatten (* G. C. Greubel, Nov 23 2017 *)
-
{a(i, p) = sum(k=1, (2*i + 1 + (-1)^(i - 1))/4, binomial(i - 1, 2*k - 2)*binomial(i - 2*k + 4, i - 2*k + 1)^(p - 1) - binomial(i - 1, 2*k - 1)*binomial(i - 2*k + 3, i - 2*k)^(p - 1))}; for(p=1,8, for(i=1, 3*p-2, print1(if(p==1,1,a(i,p)), ", "))) \\ G. C. Greubel, Nov 23 2017
A087111
This table shows the coefficients of combinatorial formulas needed for generating the sequential sums of p-th powers of binomial coefficients C(n,7). The p-th row (p>=1) contains a(i,p) for i=1 to 7*p-6, where a(i,p) satisfies Sum_{i=1..n} C(i+6,7)^p = 8 * C(n+7,8) * Sum_{i=1..7*p-6} a(i,p) * C(n-1,i-1)/(i+7).
Original entry on oeis.org
1, 1, 7, 21, 35, 35, 21, 7, 1, 1, 63, 1169, 10703, 58821, 214123, 545629, 1004307, 1356194, 1347318, 974862, 500346, 172788, 36036, 3432, 1, 511, 45633, 1589567, 29302889, 333924087, 2577462937, 14287393351, 59159005164, 188008120188
Offset: 1
Row 3 contains 1,63,1169,...,3432, so Sum_{i=1..n} C(i+6,7)^3 = 8 * C(n+7,8) * [ a(1,3)/8 + a(2,3)*C(n-1,1)/9 + a(3,3)*C(n-1,2)/10 + ... + a(15,3)*C(n-1,14)/22 ] = 8 * C(n+7,8) * [ 1/8 + 63*C(n-1,1)/9 + 1169*C(n-1,2)/10 + ... + 3432*C(n-1,14)/22 ]. Cf. A086030 for more details.
Cf.
A000292,
A024166,
A087127,
A024166,
A085438,
A085439,
A085440,
A085441,
A085442,
A087107,
A000332,
A086020,
A086021,
A086022,
A087108,
A000389,
A086023,
A086024,
A087109,
A000579,
A086025,
A086026,
A087110,
A000580,
A086027,
A086028,
A027555,
A086029,
A086030,
A087127.
-
seq(seq(add( (-1)^(k-i)*binomial(k, i)*binomial(i+7, 7)^n, i = 0..k), k = 0..7*n), n = 0..4); # Peter Bala, Mar 11 2018
-
a[i_, p_] := Sum[Binomial[i - 1, 2*k - 2]*Binomial[i - 2*k + 8, i - 2*k + 1]^(p - 1) - Binomial[i - 1, 2*k - 1]*Binomial[i - 2*k + 7, i - 2*k]^(p - 1), {k, 1, (2*i + 1 + (-1)^(i - 1))/4}]; Table[If[p == 1, 1, a[i, p]], {p, 1, 10}, {i, 1, 7*p - 6}]//Flatten (* G. C. Greubel, Nov 23 2017 *)
-
{a(i, p) = sum(k=1, (2*i + 1 + (-1)^(i - 1))/4, binomial(i - 1, 2*k - 2)*binomial(i - 2*k + 8, i - 2*k + 1)^(p - 1) - binomial(i - 1, 2*k - 1)*binomial(i - 2*k + 7, i - 2*k)^(p - 1))}; for(p=1,8, for(i=1, 7*p-6, print1(if(p==1,1,a(i,p)), ", "))) \\ G. C. Greubel, Nov 23 2017
A087108
This table shows the coefficients of combinatorial formulas needed for generating the sequential sums of p-th powers of binomial coefficients C(n,4). The p-th row (p>=1) contains a(i,p) for i=1 to 4*p-3, where a(i,p) satisfies Sum_{i=1..n} C(i+3,4)^p = 5 * C(n+4,5) * Sum_{i=1..4*p-3} a(i,p) * C(n-1,i-1)/(i+4).
Original entry on oeis.org
1, 1, 4, 6, 4, 1, 1, 24, 176, 624, 1251, 1500, 1070, 420, 70, 1, 124, 3126, 33124, 191251, 681000, 1596120, 2543520, 2780820, 2058000, 987000, 277200, 34650, 1, 624, 49376, 1350624, 18308751, 146500500, 763418870, 2749648020, 7101675070, 13440210000
Offset: 1
Row 3 contains 1,24,176,...,70, so Sum_{i=1..n} C(i+3,4)^3 = 5 * C(n+4,5) * [ a(1,3)/5 + a(2,3)*C(n-1,1)/6 + a(3,3)*C(n-1,2)/7 + ... + a(9,3)*C(n-1,8)/13 ] = 5 * C(n+4,5) * [ 1/5 + 24*C(n-1,1)/6 + 176*C(n-1,2)/7 + ... + 70*C(n-1,8)/13 ]. Cf. A086024 for more details.
From _Peter Bala_, Mar 11 2018: (Start)
Table begins
n = 0 | 1
n = 1 | 1 4 6 4 1
n = 2 | 1 24 176 624 1251 1500 1070 420 70
n = 3 | 1 124 3126 33124 191251 681000 1596120 ...
...
Row 2: C(i+4,4)^2 = C(i,0) + 24*C(i,1) + 176*C(i,2) + 624*C(i,3) + 1251*C(i,4) + 1500*C(i,5) + 1070*C(i,6) + 420*C(i,7) + 70*C(i,8). Hence, Sum_{i = 0..n-1} C(i+4,4)^2 = C(n,1) + 24*C(n,2) + 176*C(n,3) + 624*C(n,4) + 1251*C(n,5) + 1500*C(n,6) + 1070*C(n,7) + 420*C(n,8) + 70*C(n,9) .(End)
Cf.
A000292,
A024166,
A087127,
A024166,
A085438,
A085439,
A085440,
A085441,
A085442,
A087107,
A000332,
A086020,
A086021,
A086022,
A000389,
A086023,
A086024,
A087109,
A000579,
A086025,
A086026,
A087110,
A000580,
A086027,
A086028,
A087111,
A027555,
A086029,
A086030.
-
seq(seq(add( (-1)^(k-i)*binomial(k, i)*binomial(i+4, 4)^n, i = 0..k), k = 0..4*n), n = 0..6); # Peter Bala, Mar 11 2018
-
a[i_, p_] := Sum[Binomial[i - 1, 2*k - 2]*Binomial[i - 2*k + 5, i - 2*k + 1]^(p - 1) - Binomial[i - 1, 2*k - 1]*Binomial[i - 2*k + 4, i - 2*k]^(p - 1), {k, 1, (2*i + 1 + (-1)^(i - 1))/4}]; Table[If[p == 1, 1, a[i, p]], {p, 1, 10}, {i, 1, 4*p - 3}]//Flatten (* G. C. Greubel, Nov 23 2017 *)
-
{a(i, p) = sum(k=1, (2*i + 1 + (-1)^(i - 1))/4, binomial(i - 1, 2*k - 2)*binomial(i - 2*k + 5, i - 2*k + 1)^(p - 1) - binomial(i - 1, 2*k - 1)*binomial(i - 2*k + 4, i - 2*k)^(p - 1))}; for(p=1,8, for(i=1, 4*p-3, print1(if(p==1,1,a(i,p)), ", "))) \\ G. C. Greubel, Nov 23 2017
Comments