cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 22 results. Next

A262383 Denominators of a semi-convergent series leading to the first Stieltjes constant gamma_1.

Original entry on oeis.org

12, 720, 15120, 11200, 332640, 908107200, 4324320, 2940537600, 175991175360, 512143632000, 1427794368, 7795757249280, 107084577600, 279490747536000, 200143324310529600, 1178332991611776000, 157531148611200, 906996615309386784000, 5828652498614400, 262872227687509440000
Offset: 1

Views

Author

Keywords

Comments

gamma_1 = - 1/12 + 11/720 - 137/15120 + 121/11200 - 7129/332640 + 57844301/908107200 - ..., see formulas (46)-(47) in the reference below.

Examples

			Denominators of -1/12, 11/720, -137/15120, 121/11200, -7129/332640, 57844301/908107200, ...
		

Crossrefs

Programs

  • Maple
    a := n -> denom(Zeta(1 - 2*n)*(Psi(2*n) + gamma)):
    seq(a(n), n=1..20); # Peter Luschny, Apr 19 2018
  • Mathematica
    a[n_] := Denominator[-BernoulliB[2*n]*HarmonicNumber[2*n - 1]/(2*n)]; Table[a[n], {n, 1, 20}]
  • PARI
    a(n) = denominator(-bernfrac(2*n)*sum(k=1,2*n-1,1/k)/(2*n)); \\ Michel Marcus, Sep 23 2015

Formula

a(n) = denominator(-B_{2n}*H_{2n-1}/(2n)), where B_n and H_n are Bernoulli and harmonic numbers respectively.
a(n) = denominator(Zeta(1 - 2*n)*(Psi(2*n) + gamma)), where gamma is Euler's gamma. - Peter Luschny, Apr 19 2018

A262387 Denominators of a semi-convergent series leading to the third Stieltjes constant gamma_3.

Original entry on oeis.org

1, 120, 1008, 28800, 49896, 101088000, 5702400, 12350257920000, 43480172736000, 7075668600000, 206069667148800, 5919216795588096000, 581222138112000, 8460252005694128640000, 18991807088644406016000, 1150594272774401495040000, 33940540399314092544000, 9737059611553100811150566400000, 1290633707289706940160000, 1263402804161736165764268432000000
Offset: 1

Views

Author

Keywords

Comments

gamma_3 = + 1/120 - 17/1008 + 967/28800 - 4523/49896 + 33735311/101088000 - ..., see formulas (46)-(47) in the reference below.

Examples

			Denominators of -0/1, 1/120, -17/1008, 967/28800, -4523/49896, 33735311/101088000, ...
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Denominator[-BernoulliB[2*n]*(HarmonicNumber[2*n - 1]^3 - 3*HarmonicNumber[2*n - 1]*HarmonicNumber[2*n - 1, 2] + 2*HarmonicNumber[2*n - 1, 3])/(2*n)]; Table[a[n], {n, 1, 20}]
  • PARI
    a(n) = denominator(-bernfrac(2*n)*(sum(k=1,2*n-1,1/k)^3 -3*sum(k=1,2*n-1,1/k)*sum(k=1,2*n-1,1/k^2) + 2*sum(k=1,2*n-1,1/k^3))/(2*n));

Formula

a(n) = denominator(-B_{2n}*(H^3_{2n-1}-3*H_{2n-1}*H^(2){2n-1}+2*H^(3){2n-1})/(2n)), where B_n, H_n and H^(k)_n are Bernoulli, harmonic and generalized harmonic numbers respectively.

A301816 Decimal expansion of the real Stieltjes gamma function at x = 1/2.

Original entry on oeis.org

2, 7, 5, 4, 3, 4, 7, 2, 4, 5, 6, 3, 9, 2, 0, 0, 7, 9, 9, 5, 5, 2, 8, 7, 8, 7, 7, 7, 9, 7, 8, 0, 6, 8, 3, 5, 7, 9, 8, 7, 0, 2, 3, 2, 3, 8, 8, 6, 3, 0, 7, 4, 8, 7, 3, 7, 3, 3, 2, 1, 1, 4, 7, 5, 1, 3, 3, 0, 6, 3, 4, 4, 1, 7, 3, 0, 6, 4, 6, 8, 8, 2, 2, 3, 5, 9, 2
Offset: 0

Views

Author

Peter Luschny, Apr 09 2018

Keywords

Comments

Define the real Stieltjes gamma function (this is not a standard notion) as Sti(x) = -2*Pi*I(x+1)/(x+1) where I(x) = Integral_{-infinity..+infinity} log(1/2+i*z)^x/(exp(-Pi*z) + exp(Pi*z))^2 dz and i is the imaginary unit. We look here at the real part of Sti(x).

Examples

			0.2754347245639200799552878777978068357987023238863074873733211475133063441...
		

Crossrefs

Sti(0) = A001620 (Euler's constant gamma) (cf. A262235/A075266),
Sti(1/2) = A301816,
Sti(1) = A082633 (Stieltjes constant gamma_1) (cf. A262382/A262383),
Sti(3/2) = A301817,
Sti(2) = A086279 (Stieltjes constant gamma_2) (cf. A262384/A262385),
Sti(3) = A086280 (Stieltjes constant gamma_3) (cf. A262386/A262387),
Sti(4) = A086281, Sti(5) = A086282, Sti(6) = A183141, Sti(7) = A183167,
Sti(8) = A183206, Sti(9) = A184853, Sti(10) = A184854.

Programs

  • Maple
    Sti := x -> (-4*Pi/(x + 1))*int(log(1/2 + I*z)^(x + 1)/(exp(-Pi*z) + exp(Pi*z))^2, z=0..64): Sti(1/2): Re(evalf(%, 100)); # Note that this is an approximation which needs a larger domain of integration and higher precision if used for more values than are in the Data section.

Formula

c = -Re((4/3)*Pi*Integral_{-oo..oo} log(1/2+i*z)^(3/2)/(exp(-Pi*z)+exp(Pi*z))^2 dz).

A061203 (tau<=)_5(n).

Original entry on oeis.org

1, 6, 11, 26, 31, 56, 61, 96, 111, 136, 141, 216, 221, 246, 271, 341, 346, 421, 426, 501, 526, 551, 556, 731, 746, 771, 806, 881, 886, 1011, 1016, 1142, 1167, 1192, 1217, 1442, 1447, 1472, 1497, 1672, 1677, 1802, 1807, 1882, 1957, 1982, 1987, 2337, 2352
Offset: 1

Views

Author

Vladeta Jovovic, Apr 21 2001

Keywords

Comments

(tau<=)_k(n) = |{(x_1,x_2,...,x_k): x_1*x_2*...*x_k <= n}|, i.e., (tau<=)_k(n) is number of solutions to x_1*x_2*...*x_k <= n, x_i > 0.
Partial sums of A061200.
Equals row sums of triangle A140705. - Gary W. Adamson, May 24 2008

Crossrefs

Cf. tau_2(n): A000005, tau_3(n): A007425, tau_4(n): A007426, tau_5(n): A061200, tau_6(n): A034695, (unordered) 2-factorizations of n: A038548, (unordered) 3-factorizations of n: A034836, A001055, (tau<=)_2(n): A006218, (tau<=)_3(n): A061201, (tau<=)_4(n): A061202, (tau<=)_6(n): A061204.
Cf. A140705.

Programs

  • Maple
    b:= proc(k, n) option remember; uses numtheory;
         `if`(k=1, 1, add(b(k-1, d), d=divisors(n)))
        end:
    a:= proc(n) option remember; `if`(n=0, 0, b(5, n)+a(n-1)) end:
    seq(a(n), n=1..49);  # Alois P. Heinz, Feb 13 2022
  • Mathematica
    nmax = 50;
    tau4 = Table[DivisorSum[n, DivisorSigma[0, n/#]*DivisorSigma[0, #] &], {n, 1, nmax}];
    Accumulate[Table[Sum[tau4[[d]], {d, Divisors[n]}], {n, nmax}]] (* Vaclav Kotesovec, Sep 10 2018 *)

Formula

(tau<=)k(n) = Sum{i=1..n} tau_k(i).
a(n) = Sum_{k=1..n} tau_{4}(k) * floor(n/k), where tau_{4} is A007426. - Enrique Pérez Herrero, Jan 23 2013
a(n) ~ n*(log(n)^4/24 + (5*g/6 - 1/6)*log(n)^3 + 10*g1^2 + (5*g^2 - 5*g/2 - 5*g1/2 + 1/2)*log(n)^2 + (10*g^3 - 10*g^2 + (5 - 20*g1)*g + 5*g1 + 5*g2/2 - 1)*log(n) + 5*g^4 - 10*g^3 + (10 - 30*g1)*g^2 + (20*g1 + 10*g2 - 5)*g - 5*g1 - 5*g2/2 - 5*g3/6 + 1), where g is the Euler-Mascheroni constant A001620 and g1, g2, g3 are the Stieltjes constants, see A082633, A086279 and A086280. - Vaclav Kotesovec, Sep 10 2018

A061204 (tau<=)_6(n).

Original entry on oeis.org

1, 7, 13, 34, 40, 76, 82, 138, 159, 195, 201, 327, 333, 369, 405, 531, 537, 663, 669, 795, 831, 867, 873, 1209, 1230, 1266, 1322, 1448, 1454, 1670, 1676, 1928, 1964, 2000, 2036, 2477, 2483, 2519, 2555, 2891, 2897, 3113, 3119, 3245, 3371, 3407, 3413
Offset: 1

Views

Author

Vladeta Jovovic, Apr 21 2001

Keywords

Comments

(tau<=)_k(n) = |{(x_1,x_2,...,x_k): x_1*x_2*...*x_k<=n}|, i.e. (tau<=)_k(n) is number of solutions to x_1*x_2*...*x_k<=n, x_i>0.

Crossrefs

Cf. tau_2(n): A000005, tau_3(n): A007425, tau_4(n): A007426, tau_5(n): A061200, tau_6(n): A034695, (unordered) 2-factorizations of n: A038548, (unordered) 3-factorizations of n: A034836, A001055, (tau<=)_2(n): A006218, (tau<=)_3(n): A061201, (tau<=)_4(n): A061202, (tau<=)_5(n): A061203.

Programs

  • Mathematica
    nmax = 50; tau4 = Table[DivisorSum[n, DivisorSigma[0, n/#]*DivisorSigma[0, #] &], {n, 1, nmax}]; tau5 = Table[Sum[tau4[[d]], {d, Divisors[n]}], {n, nmax}]; Accumulate[Table[Sum[tau5[[d]], {d, Divisors[n]}], {n, nmax}]] (* Vaclav Kotesovec, Sep 10 2018 *)

Formula

(tau<=)k(n)=Sum{i=1..n} tau_k(i). a(n)=partial sums of A034695.
a(n) = Sum_{k=1..n} tau_{5}(k) * floor(n/k), where tau_{5} is A061200. - Enrique Pérez Herrero, Jan 23 2013
a(n) ~ n*(log(n)^5/120 + (g/4 - 1/24)*log(n)^4 + (5*g^2/2 - g - g1 + 1/6)*log(n)^3 + (10*g^3 - 15*g^2/2 + (3 - 15*g1)*g + 3*g1 + 3*g2/2 - 1/2)*log(n)^2 + (15*g^4 - 20*g^3 + (15 - 60*g1)*g^2 + (30*g1 + 15*g2 - 6)*g + 15*g1^2 - 6*g1 - 3*g2 - g3 + 1)*log(n) + 6*g^5 - 15*g^4 + (20 - 60*g1)*g^3 + (60*g1 + 30*g2 - 15)*g^2 + (60*g1^2 - 30*g1 - 15*g2 - 5*g3 + 6)*g - 15*g1^2 + g1*(6 - 15*g2) + 3*g2 + g3 + g4/4 - 1), where g is the Euler-Mascheroni constant A001620 and g1, g2, g3, g4 are the Stieltjes constants, see A082633, A086279, A086280 and A086281. - Vaclav Kotesovec, Sep 10 2018

A262384 Numerators of a semi-convergent series leading to the second Stieltjes constant gamma_2.

Original entry on oeis.org

0, -1, 5, -469, 6515, -131672123, 63427, -47800416479, 15112153995391, -29632323552377537, 4843119962464267, -1882558877249847563479, 2432942522372150087, -2768809380553055597986831, 334463513629004852735064113, -1125061940756859461946444233539, 333807583501528759350875247323
Offset: 1

Views

Author

Keywords

Comments

gamma_2 = - 1/60 + 5/336 - 469/21600 + 6515/133056 - 131672123/825552000 + ..., see formulas (46)-(47) in the reference below.

Examples

			Numerators of 0/1, -1/60, 5/336, -469/21600, 6515/133056, -131672123/825552000, ...
		

Crossrefs

Programs

  • Maple
    a := n -> numer(-Zeta(1 - 2*n)*(Psi(1, 2*n) + (Psi(0,2*n) + gamma)^2 - (Pi^2)/6)):
    seq(a(n), n=1..17); # Peter Luschny, Apr 19 2018
  • Mathematica
    a[n_] := Numerator[BernoulliB[2*n]*(HarmonicNumber[2*n - 1]^2 - HarmonicNumber[2*n - 1, 2])/(2*n)]; Table[a[n], {n, 1, 20}]
  • PARI
    a(n) = numerator(bernfrac(2*n)*(sum(k=1,2*n-1,1/k)^2 - sum(k=1,2*n-1,1/k^2))/(2*n)); \\ Michel Marcus, Sep 23 2015

Formula

a(n) = numerator(B_{2n}*(H^2_{2n-1}-H^(2)_{2n-1})/(2n)), where B_n, H_n and H^(k)_n are Bernoulli, harmonic and generalized harmonic numbers respectively.
a(n) = numerator(-Zeta(1 - 2*n)*(Psi(1,2*n) + (Psi(0,2*n) + gamma)^2 - (Pi^2)/6)), where gamma is Euler's gamma and Psi is the digamma function. - Peter Luschny, Apr 19 2018

A262385 Denominators of a semi-convergent series leading to the second Stieltjes constant gamma_2.

Original entry on oeis.org

1, 60, 336, 21600, 133056, 825552000, 89100, 11435424000, 483113030400, 101889627840000, 1471926193920, 42280119968486400, 3425059028160, 209827678712652000, 1184296360402995840, 163066081742403840000, 1749151741873536000, 20373357051590182072392960000
Offset: 1

Views

Author

Keywords

Comments

gamma_2 = - 1/60 + 5/336 - 469/21600 + 6515/133056 - 131672123/825552000 + ..., see formulas (46)-(47) in the reference below.

Examples

			Denominators of 0/1, -1/60, 5/336, -469/21600, 6515/133056, -131672123/825552000, ...
		

Crossrefs

Programs

  • Maple
    a := n -> denom(-Zeta(1 - 2*n)*(Psi(1, 2*n) + (Psi(0,2*n) + gamma)^2 - (Pi^2)/6)):
    seq(a(n), n=1..18); # Peter Luschny, Apr 19 2018
  • Mathematica
    a[n_] := Denominator[BernoulliB[2*n]*(HarmonicNumber[2*n - 1]^2 - HarmonicNumber[2*n - 1, 2])/(2*n)]; Table[a[n], {n, 1, 20}]
  • PARI
    a(n) = denominator(bernfrac(2*n)*(sum(k=1,2*n-1,1/k)^2 - sum(k=1,2*n-1,1/k^2))/(2*n)); \\ Michel Marcus, Sep 23 2015

Formula

a(n) = denominator(B_{2n}*(H^2_{2n-1}-H^(2)_{2n-1})/(2n)), where B_n, H_n and H^(k)_n are Bernoulli, harmonic and generalized harmonic numbers respectively.
a(n) = denominator(-Zeta(1 - 2*n)*(Psi(1,2*n) + (Psi(0,2*n) + gamma)^2 - (Pi^2)/6)), where gamma is Euler's gamma and Psi is the digamma function. - Peter Luschny, Apr 19 2018

A262386 Numerators of a semi-convergent series leading to the third Stieltjes constant gamma_3.

Original entry on oeis.org

0, 1, -17, 967, -4523, 33735311, -9301169, 127021899032857, -3546529522734769, 5633317707758173, -1935081812850766373, 779950247074296817622891, -1261508681536108282229, 350992098387568751020053498509, -17302487974885784968377519342317, 26213945071317075538702463006927083
Offset: 1

Views

Author

Keywords

Comments

gamma_3 = + 1/120 - 17/1008 + 967/28800 - 4523/49896 + 33735311/101088000 - ..., see formulas (46)-(47) in the reference below.

Examples

			Numerators of -0/1, 1/120, -17/1008, 967/28800, -4523/49896, 33735311/101088000, ...
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Numerator[-BernoulliB[2*n]*(HarmonicNumber[2*n - 1]^3 - 3*HarmonicNumber[2*n - 1]*HarmonicNumber[2*n - 1, 2] + 2*HarmonicNumber[2*n - 1, 3])/(2*n)]; Table[a[n], {n, 1, 20}]
  • PARI
    a(n) = numerator(-bernfrac(2*n)*(sum(k=1,2*n-1,1/k)^3 -3*sum(k=1,2*n-1,1/k)*sum(k=1,2*n-1,1/k^2) + 2*sum(k=1,2*n-1,1/k^3))/(2*n));

Formula

a(n) = numerator(-B_{2n}*(H^3_{2n-1}-3*H_{2n-1}*H^(2){2n-1}+2*H^(3){2n-1})/(2n)), where B_n, H_n and H^(k)_n are Bernoulli, harmonic and generalized harmonic numbers respectively.

A242612 Decimal expansion of the sum of the alternating series tau(4), with tau(n) = Sum_{k>0} (-1)^k*log(k)^n/k.

Original entry on oeis.org

0, 1, 7, 9, 9, 6, 9, 3, 8, 1, 0, 6, 8, 9, 1, 4, 0, 7, 7, 9, 5, 3, 6, 7, 8, 2, 1, 4, 3, 6, 1, 5, 2, 6, 2, 3, 8, 9, 8, 1, 1, 2, 3, 4, 5, 1, 3, 9, 0, 2, 3, 3, 4, 9, 2, 9, 4, 5, 0, 2, 4, 7, 9, 9, 9, 1, 3, 2, 2, 5, 6, 2, 4, 6, 3, 8, 0, 8, 5, 8, 4, 3, 0, 9, 4, 2, 9, 7, 0, 5, 9, 1, 9, 5, 1, 4, 2, 4, 2, 9, 9
Offset: 0

Views

Author

Jean-François Alcover, May 19 2014

Keywords

Examples

			-0.017996938106891407795367821436152623898...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, chapter 2.21, p. 168.

Crossrefs

Programs

  • Mathematica
    tau[n_] := -Log[2]^(n+1)/(n+1) + Sum[Binomial[n, k]*Log[2]^(n-k)*StieltjesGamma[k], {k, 0, n-1}]; Join[{0}, RealDigits[tau[4], 10, 100] // First]
  • PARI
    sumalt(k=1,(-1)^k*log(k)^4/k) \\ Charles R Greathouse IV, Mar 10 2016

Formula

tau(n) = -log(2)^(n+1)/(n+1) + Sum_(k=0..n-1) (binomial(n, k)*log(2)^(n-k)*gamma(k)).
tau(4) = gamma*log(2)^4 - (1/5)*log(2)^5 + 4*log(2)^3*gamma(1) + 6*log(2)^2*gamma(2) + 4*log(2)*gamma(3).

A242613 Decimal expansion of the sum of the alternating series tau(5), with tau(n) = Sum_{k>0} (-1)^k*log(k)^n/k.

Original entry on oeis.org

0, 2, 4, 5, 1, 4, 9, 0, 7, 6, 5, 6, 4, 0, 9, 7, 8, 2, 9, 0, 7, 4, 2, 2, 8, 0, 0, 6, 8, 6, 1, 3, 7, 1, 1, 0, 2, 8, 7, 5, 7, 0, 7, 0, 9, 2, 3, 7, 9, 1, 5, 0, 3, 7, 4, 2, 9, 0, 5, 1, 1, 2, 7, 2, 9, 8, 3, 7, 8, 8, 0, 0, 9, 9, 7, 5, 5, 3, 3, 5, 8, 9, 1, 5, 4, 6, 6, 2, 9, 4, 6, 0, 6, 2, 9, 3, 7, 4, 1, 7, 8
Offset: 0

Views

Author

Jean-François Alcover, May 19 2014

Keywords

Examples

			-0.02451490765640978290742280068613711...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, chapter 2.21, p. 168.

Crossrefs

Programs

  • Mathematica
    tau[n_] := -Log[2]^(n+1)/(n+1) + Sum[Binomial[n, k]*Log[2]^(n-k)*StieltjesGamma[k], {k, 0, n-1}]; Join[{0}, RealDigits[tau[5], 10, 100] // First]

Formula

tau(n) = -log(2)^(n+1)/(n+1) + Sum_(k=0..n-1) (binomial(n, k)*log(2)^(n-k)*gamma(k)).
tau(5) = gamma*log(2)^5 - (1/6)*log(2)^6 + 5*log(2)^4*gamma(1) + 10*log(2)^3*gamma(2) + 10*log(2)^2*gamma(3) + 5*log(2)*gamma(4).
Previous Showing 11-20 of 22 results. Next