cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 24 results. Next

A292561 Expansion of Product_{k>=1} (1 - mu(k)^2*x^k), where mu() is the Moebius function (A008683).

Original entry on oeis.org

1, -1, -1, 0, 1, 0, -1, 1, 2, 0, -3, 0, 2, 0, -3, 0, 5, 0, -4, -2, 4, 0, -5, 0, 7, 3, -8, -1, 5, 1, -10, 0, 13, 2, -10, -3, 14, -2, -17, -3, 21, 5, -22, 0, 22, 4, -34, -5, 33, 9, -33, -10, 43, 6, -43, -19, 52, 16, -51, -13, 56, 24, -71, -20, 64, 26, -78, -24, 90, 24, -90, -39, 112, 26, -115, -37
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 19 2017

Keywords

Comments

Convolution inverse of A073576.
The difference between the number of partitions of n into an even number of distinct squarefree parts and the number of partitions of n into an odd number of distinct squarefree parts.

Crossrefs

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember; `if`(n=0, 1, add(add(d*
          abs(mobius(d)), d=divisors(j)) *b(n-j), j=1..n)/n)
        end:
    a:= proc(n) option remember; `if`(n=0, 1,
          -add(b(n-i)*a(i), i=0..n-1))
        end:
    seq(a(n), n=0..80);  # Alois P. Heinz, Sep 20 2017
  • Mathematica
    nmax = 75; CoefficientList[Series[Product[1 - MoebiusMu[k]^2 x^k, {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} (1 - x^A005117(k)).

A280128 Expansion of Product_{k>=2} (1 + mu(k)^2*x^k), where mu(k) is the Moebius function (A008683).

Original entry on oeis.org

1, 0, 1, 1, 0, 2, 1, 2, 2, 2, 3, 3, 3, 5, 4, 6, 7, 7, 9, 9, 11, 13, 14, 16, 19, 18, 24, 23, 28, 31, 33, 39, 42, 46, 52, 57, 63, 71, 76, 87, 92, 103, 113, 123, 135, 149, 161, 178, 193, 210, 231, 249, 274, 298, 323, 352, 382, 414, 451, 486, 528, 572, 617, 669
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 26 2016

Keywords

Comments

Number of partitions of n into distinct squarefree parts > 1 (A144338).

Examples

			G.f. = 1 + x^2 + x^3 + 2*x^5 + x^6 + 2*x^7 + 2*x^8 + 2*x^9 + 3*x^10 + 3*x^11 + ...
a(10) = 3 because we have [10], [7, 3] and [5, 3, 2].
		

Crossrefs

Programs

  • Maple
    with(numtheory): seq(coeff(series(mul(1+mobius(k)^2*x^k,k=2..n), x,n+1),x,n),n=0..70); # Muniru A Asiru, Jul 30 2018
  • Mathematica
    nmax = 75; CoefficientList[Series[Product[1 + MoebiusMu[k]^2 x^k, {k, 2, nmax}], {x, 0, nmax}], x]
  • PARI
    {a(n) = if(n < 0, 0, polcoeff( prod(k=2, n, 1 + issquarefree(k)*x^k + x*O(x^n)), n))}; /* Michael Somos, Dec 26 2016 */

Formula

G.f.: Product_{k>=2} (1 + mu(k)^2*x^k).

A300894 L.g.f.: log(Product_{k>=1} (1 + mu(k)^2*x^k)) = Sum_{n>=1} a(n)*x^n/n, where mu() is the Moebius function (A008683).

Original entry on oeis.org

1, 1, 4, -3, 6, 4, 8, -3, 4, 6, 12, -12, 14, 8, 24, -3, 18, 4, 20, -18, 32, 12, 24, -12, 6, 14, 4, -24, 30, 24, 32, -3, 48, 18, 48, -12, 38, 20, 56, -18, 42, 32, 44, -36, 24, 24, 48, -12, 8, 6, 72, -42, 54, 4, 72, -24, 80, 30, 60, -72, 62, 32, 32, -3, 84, 48, 68, -54, 96, 48, 72, -12, 74, 38, 24
Offset: 1

Views

Author

Ilya Gutkovskiy, Mar 14 2018

Keywords

Examples

			L.g.f.: L(x) = x + x^2/2 + 4*x^3/3 - 3*x^4/4 + 6*x^5/5 + 4*x^6/6 + 8*x^7/7 - 3*x^8/8 + 4*x^9/9 + 6*x^10/10 + ...
exp(L(x)) = 1 + x + x^2 + 2*x^3 + x^4 + 2*x^5 + 3*x^6 + 3*x^7 + 4*x^8 + 4*x^9 + 5*x^10 + ... + A087188(n)*x^n + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 75; Rest[CoefficientList[Series[Log[Product[(1 + MoebiusMu[k]^2 x^k), {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]]
    nmax = 75; Rest[CoefficientList[Series[Sum[MoebiusMu[k]^2 k x^k/(1 + x^k), {k, 1, nmax}], {x, 0, nmax}], x]]
    Table[DivisorSum[n, (-1)^(n/# + 1) # &, SquareFreeQ[#] &], {n, 75}]
    f[p_, e_] := If[p == 2, If[e == 1, 1, -3], p + 1]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Oct 25 2020 *)
  • PARI
    seq(n)=Vec(sum(k=1, n, moebius(k)^2*k*x^k/(1 + x^k) + O(x*x^n))); \\ Andrew Howroyd, Jul 20 2018
    
  • PARI
    a(n)={sumdiv(n, d, if(issquarefree(d), (-1)^(n/d + 1) * d))} \\ Andrew Howroyd, Jul 20 2018

Formula

G.f.: Sum_{k>=1} mu(k)^2*k*x^k/(1 + x^k).
a(n) = n + 1 if n is an odd prime (A065091).
Multiplicative with a(2^e) = 1 if e = 1, and -3 otherwise, and a(p^e) = p+1 for an odd prime p. - Amiram Eldar, Oct 25 2020
Sum_{k=1..n} a(k) ~ n^2/4. - Amiram Eldar, Nov 20 2022

Extensions

Keyword:mult added by Andrew Howroyd, Jul 20 2018

A300586 Number of partitions of n into distinct squarefree parts that do not divide n.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 2, 1, 4, 2, 2, 4, 6, 2, 8, 4, 6, 6, 15, 4, 11, 10, 12, 8, 30, 3, 38, 24, 17, 24, 23, 14, 70, 36, 37, 23, 102, 8, 122, 49, 39, 80, 177, 38, 136, 54, 113, 101, 297, 60, 152, 102, 192, 226, 485, 28, 571, 312, 200, 390, 338, 84, 908, 393, 507, 104, 1229, 241, 1421
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 09 2018

Keywords

Examples

			a(14) = 2 because we have [11, 3] and [6, 5, 3].
		

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[(1 + Boole[Mod[n, k] != 0 && SquareFreeQ[k]] x^k), {k, 1, n}], {x, 0, n}], {n, 0, 73}]

A357525 Expansion of Product_{k>=1} (1 + mu(k)*x^k).

Original entry on oeis.org

1, 1, -1, -2, -1, 0, 1, 1, 0, 0, 1, 0, -2, -2, 1, 4, 3, -2, -4, -2, 0, 2, 3, 0, -1, 1, 0, -3, -3, -1, 2, 4, 3, 0, -2, -1, 2, 0, -5, -3, 3, 3, 0, -2, -4, -2, 4, 5, 3, 3, 1, -4, -9, -8, 3, 11, 6, 0, -3, -7, -4, 2, -1, -2, 6, 8, -2, -10, -8, 4, 14, 11, 2, -6, -11, -5
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 02 2022

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 75; CoefficientList[Series[Product[(1 + MoebiusMu[k] x^k), {k, 1, nmax}], {x, 0, nmax}], x]
    a[0] = 1; a[n_] := a[n] = -(1/n) Sum[Sum[d (-MoebiusMu[d])^(k/d), {d, Divisors[k]}] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 75}]

A358023 Number of partitions of n into at most 2 distinct squarefree parts.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 2, 3, 3, 2, 2, 3, 3, 4, 3, 4, 5, 5, 4, 4, 5, 5, 5, 5, 7, 5, 5, 5, 6, 6, 5, 6, 8, 7, 7, 7, 11, 8, 7, 8, 11, 9, 8, 10, 12, 10, 8, 9, 13, 10, 8, 8, 13, 11, 10, 8, 13, 11, 11, 10, 14, 12, 11, 11, 15, 12, 11, 12, 17, 13, 13, 12, 21, 14, 14, 13, 19, 15, 13, 15, 20
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 25 2022

Keywords

Crossrefs

A358024 Number of partitions of n into at most 3 distinct squarefree parts.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 3, 3, 4, 4, 5, 5, 5, 7, 8, 8, 9, 10, 13, 12, 13, 14, 17, 16, 18, 17, 21, 20, 21, 23, 26, 25, 26, 27, 32, 31, 33, 36, 40, 40, 39, 42, 48, 47, 47, 50, 58, 56, 55, 58, 66, 64, 61, 67, 75, 74, 70, 74, 84, 83, 79, 82, 93, 91, 89, 93, 103, 102, 97, 105, 115
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 25 2022

Keywords

Crossrefs

A358025 Number of partitions of n into at most 4 distinct squarefree parts.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 3, 3, 4, 4, 5, 6, 6, 8, 9, 10, 13, 13, 15, 17, 20, 22, 24, 27, 31, 32, 34, 37, 41, 46, 47, 53, 59, 61, 64, 71, 77, 83, 84, 95, 102, 108, 110, 122, 131, 137, 139, 154, 165, 173, 175, 191, 205, 215, 215, 233, 250, 260, 261, 282, 299, 313, 310, 332, 353, 368
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 25 2022

Keywords

Crossrefs

A329069 Expansion of Product_{k>=1} 1 / (1 + mu(k)^2 * x^k).

Original entry on oeis.org

1, -1, 0, -1, 2, -2, 1, -2, 4, -3, 2, -4, 7, -6, 4, -8, 12, -10, 9, -14, 20, -18, 16, -24, 32, -29, 27, -38, 49, -46, 43, -59, 74, -71, 69, -90, 112, -107, 106, -136, 164, -160, 159, -199, 238, -232, 234, -288, 338, -333, 338, -412, 477, -473, 485, -582, 667, -666, 686, -813, 923
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 04 2019

Keywords

Comments

Convolution inverse of A087188.

Crossrefs

Programs

  • Mathematica
    nmax = 60; CoefficientList[Series[Product[1/(1 + MoebiusMu[k]^2 x^k), {k, 1, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d) Boole[SquareFreeQ[d]] d, {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 60}]

Formula

G.f.: Product_{k>=1} 1 / (1 + x^A005117(k)).

A331982 Number of compositions (ordered partitions) of n into distinct odd squarefree parts.

Original entry on oeis.org

1, 1, 0, 1, 2, 1, 2, 1, 4, 6, 2, 7, 4, 7, 4, 13, 30, 13, 8, 25, 32, 31, 56, 37, 82, 42, 104, 168, 128, 175, 152, 181, 226, 307, 252, 439, 326, 691, 372, 943, 1190, 1069, 1238, 1435, 2056, 1806, 2102, 2185, 3664, 2550, 4480, 3175, 6090, 3781, 7628, 9691
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 03 2020

Keywords

Examples

			a(8) = 4 because we have [7, 1], [5, 3], [3, 5] and [1, 7].
		

Crossrefs

Previous Showing 11-20 of 24 results. Next