A202023 Triangle T(n,k), read by rows, given by (1, 0, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1, -1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.
1, 1, 0, 1, 1, 0, 1, 3, 0, 0, 1, 6, 1, 0, 0, 1, 10, 5, 0, 0, 0, 1, 15, 15, 1, 0, 0, 0, 1, 21, 35, 7, 0, 0, 0, 0, 1, 28, 70, 28, 1, 0, 0, 0, 0, 1, 36, 126, 84, 9, 0, 0, 0, 0, 0, 1, 45, 210, 210, 45, 1, 0, 0, 0, 0, 0
Offset: 0
Examples
Triangle begins : 1 1, 0 1, 1, 0 1, 3, 0, 0 1, 6, 1, 0, 0 1, 10, 5, 0, 0, 0 1, 15, 15, 1, 0, 0, 0 1, 21, 35, 7, 0, 0, 0, 0 1, 28, 70, 28, 1, 0, 0, 0, 0
Crossrefs
Programs
-
Mathematica
Table[Length[Select[Subsets[Range[n-1]],Length[Split[#,#2==#1+1&]]==k&]],{n,0,10},{k,0,n}] (* Gus Wiseman, Jul 08 2025 *)
Formula
T(n,k) = binomial(n,2k).
G.f.: (1-x)/((1-x)^2-y*x^2).
T(n,k)= Sum_{j, j>=0} T(n-1-j,k-1)*j with T(n,0)=1 and T(n,k)= 0 if k<0 or if n
T(n,k) = 2*T(n-1,k) + T(n-2,k-1) - T(n-2,k) for n>1, T(0,0) = T(1,0) = 1, T(1,1) = 0, T(n,k) = 0 if k>n or if k<0. - Philippe Deléham, Nov 10 2013
A025170 Expansion of g.f.: 1/(1 + 2*x + 9*x^2).
1, -2, -5, 28, -11, -230, 559, 952, -6935, 5302, 51811, -151340, -163619, 1689298, -1906025, -11391632, 39937489, 22649710, -404736821, 605626252, 2431378885, -10313394038, -1255621889, 95331790120, -179362983239, -499260144602, 2612787138355, -732232975292
Offset: 0
Comments
Reciprocal Chebyshev polynomial of second kind evaluated at 3 multiplied by (-1)^n.
From Sharon Sela (sharonsela(AT)hotmail.com), Jan 19 2002: (Start)
a(n) is (-1)^n times the determinant of the following tridiagonal n X n matrix:
[2 3 0 . . . . . . .]
[3 2 3 0 . . . . . .]
[0 3 2 3 0 . . . . .]
[. 0 3 2 3 0 . . . .]
[. . . . . . . . . .]
[. . . . . . . . . .]
[. . . . 0 3 2 3 0 .]
[. . . . . 0 3 2 3 0]
[. . . . . . 0 3 2 3]
[. . . . . . . 0 3 2]
(End)
Links
Programs
-
Magma
[(-3)^n*Evaluate(ChebyshevU(n+1),1/3): n in [0..50]]; // G. C. Greubel, Jan 02 2024
-
Mathematica
Table[3^n ChebyshevU[n, -1/3], {n, 0, 24}]
-
PARI
a(n)=if(n<0,0,polcoeff(1/(1+2*x+9*x^2)+x*O(x^n),n))
-
PARI
a(n)=if(n<0, 0, 3^n*subst(poltchebi(n+1)+3*poltchebi(n),'x,-1/3)*3/8) /* Michael Somos, Sep 15 2005 */
-
PARI
a(n)=if(n<0, 0, (-1)^n*matdet(matrix(n,n,i,j, if(abs(i-j)<2, 2+abs(i-j))))) /* Michael Somos, Sep 15 2005 */
-
SageMath
[3^n*chebyshev_U(n,-1/3) for n in range(41)] # G. C. Greubel, Jan 02 2024
Formula
a(n) = 3^n * ChebyshevU(n, -1/3).
a(n) = ( A088137(n+1) )^2 + ( A087455(n+1)/2 )^2 - ( A087455(n+2)/2 )^2. - Creighton Dement, Aug 20 2004
a(n) = -(2*a(n-1) + 9*a(n-2)) for n>1, with a(0)=1, a(1)=-2. - Philippe Deléham, Sep 19 2009
a(n) = (-2)^n*Product_{k=1..n}(1 + 3*cos(k*Pi/(n+1))). - Peter Luschny, Nov 28 2019
From G. C. Greubel, Jan 02 2024: (Start)
a(n) = (-1)^n * A127357(n).
E.g.f.: (1/4)*exp(-x)*(4*cos(2*sqrt(2)*x) - sqrt(2)*sin(2*sqrt(2)*x)). (End)
A266046 Real part of Q^n, where Q is the quaternion 2 + j + k.
1, 2, 2, -4, -28, -88, -184, -208, 272, 2336, 7712, 16832, 21056, -16768, -193408, -673024, -1531648, -2088448, 836096, 15875072, 58483712, 138684416, 203835392, -16764928, -1290072064, -5059698688, -12498362368, -19635257344, -3550855168, 103608123392
Offset: 0
Comments
In general, given a quaternion Q = r+u*i+v*j+w*k with integer coefficients [r,u,v,w], its powers Q^n = R(n)+U(n)*i+V(n)*j+W(n)*k define four integer sequences R(n),U(n),V(n),W(n). The process can be also transcribed as a four-term, first order recurrence for the elements of the four sequences. Since |Q^n| = |Q|^n, we have, for any n, R(n)^2+U(n)^2+V(n)^2+W(n)^2 = (L^2)^n, where L^2 = r^2+u^2+v^2+w^2 is a constant. The normalized sequence Q^n/L^n describes a unitary quaternion undergoing stepwise rotations by the angle phi = arctan(sqrt(u^2+v^2+w^2)/r). Consequently, the four sequences exhibit sign changes with the mean period of P = 2*Pi/phi steps.
When Q has a symmetry with respect to permutations and/or inversions of the imaginary axes, the four sequences become even more interdependent.
In this particular case Q = 2+j+k, and Q^n = a(n)+b(n)*(j+k), where b(n) is the sequence A190965. The first-order recurrence reduces to two-terms, namely a(n+1)=2*a(n)-2*b(n), b(n+1)=2*b(n)+a(n). This implies further a single-term, second order recurrence a(n+2)=4*a(n+1)-6*a(n), shared by both a(n) and b(n), but with different starting terms. The mean period of sign changes is P = 10.208598624... steps.
The following OEIS sequences can be also cast as quaternion powers:
Links
- Stanislav Sykora, Table of n, a(n) for n = 0..1000
- Beata Bajorska-Harapińska, Barbara Smoleń, Roman Wituła, On Quaternion Equivalents for Quasi-Fibonacci Numbers, Shortly Quaternaccis, Advances in Applied Clifford Algebras Vol. 29, No. 3 (2019), Article 54.
- Index entries for linear recurrences with constant coefficients, signature (4,-6).
Programs
-
Magma
[n le 2 select n else 4*Self(n-1)-6*Self(n-2): n in [1..40]]; // Vincenzo Librandi, Dec 22 2015
-
Mathematica
LinearRecurrence[{4, -6}, {1, 2}, 30] (* Bruno Berselli, Dec 22 2015 *)
-
PARI
\\ A simple function to generate quaternion powers: QuaternionToN(r, u, v, w, nmax) = {local (M); M = matrix(nmax+1, 4); M[1, 1]=1; for(n=2, nmax+1, M[n, 1]=r*M[n-1, 1]-u*M[n-1, 2]-v*M[n-1, 3]-w*M[n-1, 4]; M[n, 2]=u*M[n-1, 1]+r*M[n-1, 2]+w*M[n-1, 3]-v*M[n-1, 4]; M[n, 3]=v*M[n-1, 1]-w*M[n-1, 2]+r*M[n-1, 3]+u*M[n-1, 4]; M[n, 4]=w*M[n-1, 1]+v*M[n-1, 2]-u*M[n-1, 3]+r*M[n-1, 4]; ); return (M); } a=QuaternionToN(2, 0, 1, 1, 1000)[,1]; \\ Select the real parts
-
PARI
Vec((1-2*x)/(1-4*x+6*x^2) + O(x^40)) \\ Colin Barker, Dec 21 2015
Formula
a(n)^2 + 2*A190965(n)^2 = 6^n.
From Colin Barker, Dec 21 2015: (Start)
a(n) = ((2-i*sqrt(2))^n+(2+i*sqrt(2))^n)/2, where i=sqrt(-1).
a(n) = 4*a(n-1) - 6*a(n-2) for n>1.
G.f.: (1-2*x) / (1-4*x+6*x^2). (End)
A106632 Expansion of g.f. -(1+27*x^2)/((1+3*x)*(1-2*x+9*x^2)).
-1, 1, -25, 49, -1, 529, -1849, 289, -9025, 58081, -38809, 108241, -1560001, 2283121, -525625, 35796289, -95863681, 2666689, -681575449, 3261894769, -1289169025, 9906021841, -94109673529, 99199171681, -84332740801, 2327696411041, -4753075824025, 46970592529, -48635546218561
Offset: 0
Comments
Floretion Algebra Multiplication Program, FAMP Code: 1tesseq[A*B] with A = + .5'i - .5'k + .5i' - .5k' - 3'jj' - .5'ij' - .5'ji' - .5'jk' - .5'kj' and B = + .5'i + .5'j + .5i' + .5j' + .5'kk' + .5'ij' + .5'ji' + .5e
References
- S. Severini, A note on two integer sequences arising from the 3-dimensional hypercube, Technical Report, Department of Computer Science, University of Bristol, Bristol, UK (October 2003).
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Robert Munafo, Sequences Related to Floretions
- Index entries for linear recurrences with constant coefficients, signature (-1,-3,-27).
Programs
-
GAP
a:=[-1,1,-25];; for n in [4..40] do a[n]:=-a[n-1]-3*a[n-2] - 27*a[n-3]; od; a; # G. C. Greubel, Feb 19 2019
-
Magma
m:=40; R
:=PowerSeriesRing(Integers(), m); Coefficients(R!( -(1+27*x^2)/((1+3*x)*(1-2*x+9*x^2)) )); // G. C. Greubel, Feb 19 2019 -
Mathematica
CoefficientList[Series[-(1+27x^2)/((1+3x)(1-2x+9x^2)),{x,0,40}],x] (* or *) LinearRecurrence[{-1,-3,-27},{-1,1,-25},40] (* Harvey P. Dale, Oct 03 2014 *)
-
PARI
my(x='x+O('x^40)); Vec(-(1+27*x^2)/((1+3*x)*(1-2*x+9*x^2))) \\ G. C. Greubel, Feb 19 2019
-
SageMath
(-(1+27*x^2)/((1+3*x)*(1-2*x+9*x^2))).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Feb 19 2019
Formula
a(n) = (3^(n+1)/2)*(cos((n+1)*arccos(1/3)) + (-1)^(n+1) ).
a(n) = - a(n-1) - 3*a(n-2) - 27*a(n-3), a(0) = -1, a(1) = 1, a(2) = -25.
a(n) = 1/4( p^(n+1) + q^(n+1) ) + (-3)^(n+1)/2 with p = 1 + 2*sqrt(2)i and q = 1 - 2*sqrt(2)i ( i^2 = -1 ).
Extensions
Edited by Ralf Stephan, Apr 09 2009
Definition corrected by Harvey P. Dale, Oct 03 2014
A221131 Table, T, read by antidiagonals where T(-j,k) = ((1+sqrt(j))^k + (1-sqrt(j))^k)/2.
1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, -1, -2, 1, 1, 1, -2, -5, -4, 1, 1, 1, -3, -8, -7, -4, 1, 1, 1, -4, -11, -8, 1, 0, 1, 1, 1, -5, -14, -7, 16, 23, 8, 1, 1, 1, -6, -17, -4, 41, 64, 43, 16, 1, 1, 1, -7, -20, 1, 76, 117, 64, 17, 16, 1, 1, 1, -8, -23, 8, 121, 176, 29, -128, -95, 0, 1
Offset: 0
Comments
.j\k.........0..1...2....3...4....5....6......7.......8......9......10
.0: A000012..1..1...1....1...1....1....1......1.......1......1.......1
-1: A146559..1..1...0...-2..-4...-4....0......8......16.....16.......0
-2: A087455..1..1..-1...-5..-7....1...23.....43......17....-95....-241
-3: A138230..1..1..-2...-8..-8...16...64.....64....-128...-512....-512
-4: A006495..1..1..-3..-11..-7...41..117.....29....-527..-1199.....237
-5: A138229..1..1..-4..-14..-4...76..176...-104...-1264..-1904....3776
-6: A090592..1..1..-5..-17...1..121..235...-377...-2399..-2159...12475
-7: A090590..1..1..-6..-20...8..176..288...-832...-3968..-1280...29184
-8: A025172..1..1..-7..-23..17..241..329..-1511...-5983...1633...57113
-9: A120743..1..1..-8..-26..28..316..352..-2456...-8432...7696...99712
-10: ........1..1..-9..-29..41..401..351..-3709..-11279..18241..160551
Crossrefs
Programs
-
Mathematica
T[j_, k_] := Expand[((1 + Sqrt[j])^k + (1 - Sqrt[j])^k)/2]; Table[ T[ -j + k, k], {j, 0, 11}, {k, 0, j}] // Flatten
Comments