cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 27 results. Next

A360247 Numbers for which the prime indices have the same mean as the distinct prime indices.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 46, 47, 49, 51, 53, 55, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 81, 82, 83, 85, 86, 87, 89, 90, 91, 93, 94, 95, 97, 100, 101, 102, 103, 105, 106, 107, 109, 110, 111, 113, 114, 115, 118, 119, 121, 122, 123, 125, 127, 128, 129, 130
Offset: 1

Views

Author

Gus Wiseman, Feb 07 2023

Keywords

Comments

First differs from A072774 in having 90.
First differs from A242414 in lacking 126.
Includes all squarefree numbers and perfect powers.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 900 are {3,3,2,2,1,1} with mean 2, and the distinct prime indices are {1,2,3} also with mean 2, so 900 is in the sequence.
		

Crossrefs

Signature instead of parts: A324570, counted by A114638.
Signature instead of distinct parts: A359903, counted by A360068.
These partitions are counted by A360243.
The complement is A360246, counted by A360242.
For median instead of mean the complement is A360248, counted by A360244.
For median instead of mean we have A360249, counted by A360245.
For greater instead of equal mean we have A360252, counted by A360250.
For lesser instead of equal mean we have A360253, counted by A360251.
A008284 counts partitions by number of parts, distinct A116608.
A058398 counts partitions by mean, also A327482.
A088529/A088530 gives mean of prime signature (A124010).
A112798 lists prime indices, length A001222, sum A056239.
A316413 = numbers whose prime indices have integer mean, distinct A326621.
A326567/A326568 gives mean of prime indices.
A326619/A326620 gives mean of distinct prime indices.

Programs

  • Maple
    isA360247 := proc(n)
        local ifs,pidx,pe,meanAll,meanDist ;
        if n = 1 then
            return true ;
        end if ;
        ifs := ifactors(n)[2] ;
        # list of prime indices with multiplicity
        pidx := [] ;
        for pe in ifs do
            [numtheory[pi](op(1,pe)),op(2,pe)] ;
            pidx := [op(pidx),%] ;
        end do:
        meanAll := add(op(1,pe)*op(2,pe),pe=pidx) / add(op(2,pe),pe=pidx) ;
        meanDist := add(op(1,pe),pe=pidx) / nops(pidx) ;
        if meanAll = meanDist then
            true;
        else
            false;
        end if;
    end proc:
    for n from 1 to 130 do
        if isA360247(n) then
            printf("%d,",n) ;
        end if;
    end do: # R. J. Mathar, May 22 2023
  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Mean[prix[#]]==Mean[Union[prix[#]]]&]

A360453 Numbers for which the prime multiplicities (or sorted signature) have the same median as the distinct prime indices.

Original entry on oeis.org

1, 2, 9, 12, 18, 40, 100, 112, 125, 180, 250, 252, 300, 352, 360, 392, 396, 405, 450, 468, 504, 540, 588, 600, 612, 675, 684, 720, 756, 792, 828, 832, 882, 900, 936, 1008, 1044, 1116, 1125, 1176, 1188, 1200, 1224, 1332, 1350, 1368, 1372, 1404, 1440, 1452, 1476
Offset: 1

Views

Author

Gus Wiseman, Feb 10 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The terms together with their prime indices begin:
    1: {}
    2: {1}
    9: {2,2}
   12: {1,1,2}
   18: {1,2,2}
   40: {1,1,1,3}
  100: {1,1,3,3}
  112: {1,1,1,1,4}
  125: {3,3,3}
  180: {1,1,2,2,3}
  250: {1,3,3,3}
  252: {1,1,2,2,4}
  300: {1,1,2,3,3}
  352: {1,1,1,1,1,5}
  360: {1,1,1,2,2,3}
For example, the prime indices of 756 are {1,1,2,2,2,4} with distinct parts {1,2,4} with median 2 and multiplicities {1,2,3} with median 2, so 756 is in the sequence.
		

Crossrefs

Without taking median we have A109298, unordered A109297.
For mean instead of median we have A324570, counted by A114638.
For indices instead of multiplicities we have A360249, counted by A360245.
For indices instead of distinct indices we have A360454, counted by A360456.
These partitions are counted by A360455.
A088529/A088530 gives mean of prime signature A124010.
A112798 lists prime indices, length A001222, sum A056239.
A240219 counts partitions with mean equal to median, ranks A359889.
A316413 = numbers whose prime indices have integer mean, distinct A326621.
A325347 = partitions with integer median, strict A359907, ranks A359908.
A326567/A326568 gives mean of prime indices.
A326619/A326620 gives mean of distinct prime indices.
A359893 and A359901 count partitions by median.
A360005 gives median of prime indices (times two).

Programs

  • Mathematica
    Select[Range[100],#==1||Median[Last/@FactorInteger[#]]== Median[PrimePi/@First/@FactorInteger[#]]&]

A360614 Numerator of the average distance between consecutive 0-prepended prime indices of n; a(1) = 0.

Original entry on oeis.org

0, 1, 2, 1, 3, 1, 4, 1, 1, 3, 5, 2, 6, 2, 3, 1, 7, 2, 8, 1, 2, 5, 9, 1, 3, 3, 2, 4, 10, 1, 11, 1, 5, 7, 2, 1, 12, 4, 3, 3, 13, 4, 14, 5, 1, 9, 15, 2, 2, 1, 7, 2, 16, 1, 5, 1, 4, 5, 17, 3, 18, 11, 4, 1, 3, 5, 19, 7, 9, 4, 20, 2, 21, 6, 1, 8, 5, 2, 22, 3, 1, 13, 23, 1, 7, 7, 5, 5, 24, 3, 3, 3, 11, 15, 4, 1, 25, 4, 5, 3
Offset: 1

Views

Author

Gus Wiseman, Feb 19 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The 0-prepended prime indices of 100 are {0,1,1,3,3}, with differences (1,0,2,0), with mean 3/4, so a(100) = 3.
		

Crossrefs

Positions of 1's are A340609, a superset of A106529.
For twice median instead of mean we have A360555.
The denominator is A360615.
A112798 lists prime indices, length A001222, sum A056239, max A061395.
A124010 gives prime signature, mean A088529/A088530.
A316413 lists numbers with integer mean prime index, complement A348551.
A326567/A326568 gives mean of prime indices.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[If[n==1,0,Numerator[Mean[Differences[Prepend[prix[n],0]]]]],{n,100}]
  • PARI
    A360614(n) = if(1==n,0, my(u=primepi(vecmax(factor(n)[, 1]))); (u/gcd(u, bigomega(n)))); \\ Antti Karttunen, Oct 23 2023

Formula

Numerator of A061395(n)/A001222(n).
a(1) = 0; and for n >= 1, a(n) = A061395(n) / A366785(n) = A061395(n) / gcd(A001222(n), A061395(n)). - Antti Karttunen, Oct 23 2023

Extensions

Data section extended up to a(100) by Antti Karttunen, Oct 23 2023

A360615 Denominator of the average distance between consecutive 0-prepended prime indices of n; a(1) = 0.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 3, 1, 1, 2, 4, 1, 3, 1, 1, 1, 2, 1, 2, 2, 1, 3, 3, 1, 1, 1, 5, 2, 2, 1, 2, 1, 1, 1, 4, 1, 3, 1, 3, 1, 2, 1, 5, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 1, 4, 1, 2, 3, 6, 1, 3, 1, 3, 2, 3, 1, 5, 1, 1, 1, 3, 2, 1, 1, 5, 2, 2, 1, 1, 2, 1, 1, 4
Offset: 1

Views

Author

Gus Wiseman, Feb 19 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The 0-prepended prime indices of 100 are {0,1,1,3,3}, with differences (1,0,2,0), with mean 3/4, so a(100) = 4.
		

Crossrefs

Positions of 1's are A340610
The numerator is A360614.
A112798 lists prime indices, length A001222, sum A056239, max A061395.
A124010 gives prime signature, mean A088529/A088530.
A316413 lists numbers with integer mean prime index, complement A348551.
A326567/A326568 gives mean of prime indices.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[If[n==1,0,Denominator[Mean[Differences[Prepend[prix[n],0]]]]],{n,100}]
  • PARI
    a(n) = if (n==1, 0, my(f=factor(n)); denominator(primepi(vecmax(f[, 1]))/ bigomega(f))); \\ Michel Marcus, Feb 20 2023

Formula

Denominator of A061395(n)/A001222(n), for n>1.

A360687 Number of integer partitions of n whose multiplicities have integer median.

Original entry on oeis.org

1, 2, 3, 4, 5, 9, 10, 16, 22, 34, 42, 65, 80, 115, 145, 195, 240, 324, 396, 519, 635, 814, 994, 1270, 1549, 1952, 2378, 2997, 3623, 4521, 5466, 6764, 8139, 10008, 12023, 14673, 17534, 21273, 25336, 30593, 36302, 43575, 51555, 61570, 72653, 86382, 101676
Offset: 1

Views

Author

Gus Wiseman, Feb 20 2023

Keywords

Comments

The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The a(1) = 1 through a(8) = 16 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (21)   (22)    (32)     (33)      (43)       (44)
             (111)  (31)    (41)     (42)      (52)       (53)
                    (1111)  (2111)   (51)      (61)       (62)
                            (11111)  (222)     (421)      (71)
                                     (321)     (2221)     (431)
                                     (2211)    (3211)     (521)
                                     (3111)    (4111)     (2222)
                                     (111111)  (211111)   (3221)
                                               (1111111)  (3311)
                                                          (4211)
                                                          (5111)
                                                          (32111)
                                                          (221111)
                                                          (311111)
                                                          (11111111)
For example, the partition y = (3,2,2,1) has multiplicities (1,2,1), and the multiset {1,1,2} has median 1, so y is counted under a(8).
		

Crossrefs

The case of an odd number of multiplicities is A090794.
For mean instead of median we have A360069, ranks A067340.
These partitions have ranks A360553.
The complement is counted by A360690, ranks A360554.
A058398 counts partitions by mean, see also A008284, A327482.
A124010 gives prime signature, sorted A118914, mean A088529/A088530.
A325347 = partitions w/ integer median, strict A359907, complement A307683.
A359893 and A359901 count partitions by median, odd-length A359902.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],IntegerQ[Median[Length/@Split[#]]]&]],{n,30}]

A360454 Numbers for which the prime multiplicities (or sorted signature) have the same median as the prime indices.

Original entry on oeis.org

1, 2, 9, 54, 100, 120, 125, 135, 168, 180, 189, 240, 252, 264, 280, 297, 300, 312, 336, 351, 396, 408, 440, 450, 456, 459, 468, 480, 513, 520, 528, 540, 552, 560, 588, 612, 616, 621, 624, 672, 680, 684, 696, 728, 744, 756, 760, 783, 816, 828, 837, 880, 882
Offset: 1

Views

Author

Gus Wiseman, Feb 10 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The terms together with their prime indices begin:
    1: {}
    2: {1}
    9: {2,2}
   54: {1,2,2,2}
  100: {1,1,3,3}
  120: {1,1,1,2,3}
  125: {3,3,3}
  135: {2,2,2,3}
  168: {1,1,1,2,4}
  180: {1,1,2,2,3}
  189: {2,2,2,4}
  240: {1,1,1,1,2,3}
For example, the prime indices of 336 are {1,1,1,1,2,4} with median 1 and multiplicities {1,1,4} with median 1, so 336 is in the sequence.
		

Crossrefs

For mean instead of median we have A359903, counted by A360068.
For distinct indices instead of indices we have A360453, counted by A360455.
For distinct indices instead of multiplicities: A360249, counted by A360245.
These partitions are counted by A360456.
A088529/A088530 gives mean of prime signature A124010.
A112798 lists prime indices, length A001222, sum A056239.
A240219 counts partitions with mean equal to median, ranked by A359889.
A325347 counts partitions w/ integer median, strict A359907, ranks A359908.
A326567/A326568 gives mean of prime indices.
A326619/A326620 gives mean of distinct prime indices.
A359893 and A359901 count partitions by median.
A359894 counts partitions with mean different from median, ranks A359890.
A360005 gives median of prime indices (times two).

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[1000],Median[prix[#]]==Median[Length/@Split[prix[#]]]&]

A363951 Numbers whose prime indices satisfy (length) = (mean), or (sum) = (length)^2.

Original entry on oeis.org

2, 9, 10, 68, 78, 98, 99, 105, 110, 125, 328, 444, 558, 620, 783, 812, 870, 966, 988, 1012, 1035, 1150, 1156, 1168, 1197, 1254, 1326, 1330, 1425, 1521, 1666, 1683, 1690, 1704, 1785, 1870, 1911, 2002, 2125, 2145, 2275, 2401, 2412, 2541, 2662, 2680, 2695, 3025
Offset: 1

Views

Author

Gus Wiseman, Jul 05 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The terms together with their prime indices begin:
    2: {1}
    9: {2,2}
   10: {1,3}
   68: {1,1,7}
   78: {1,2,6}
   98: {1,4,4}
   99: {2,2,5}
  105: {2,3,4}
  110: {1,3,5}
  125: {3,3,3}
  328: {1,1,1,13}
  444: {1,1,2,12}
  558: {1,2,2,11}
  620: {1,1,3,11}
  783: {2,2,2,10}
  812: {1,1,4,10}
  870: {1,2,3,10}
  966: {1,2,4,9}
  988: {1,1,6,8}
		

Crossrefs

Partitions of this type are counted by A364055, without zeros A206240.
The RHS is A001222.
The LHS is A326567/A326568.
A008284 counts partitions by length, A058398 by mean.
A088529/A088530 gives mean of prime signature A124010.
A112798 lists prime indices, sum A056239.
A124943 counts partitions by low median, high A124944.
A316413 ranks partitions with integer mean, counted by A067538.
A326622 counts factorizations with integer mean, strict A328966.
A363950 ranks partitions with low mean 2, counted by A026905 redoubled.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Mean[prix[#]]==PrimeOmega[#]&]

A359904 Numbers whose prime factors and prime signature have the same mean.

Original entry on oeis.org

1, 4, 27, 400, 3125, 9072, 10800, 14580, 24057, 35721, 50625, 73984, 117760, 134400, 158976, 181440, 191488, 389376, 452709, 544000, 583680, 664848, 731136, 774400, 823543, 878592, 965888
Offset: 1

Views

Author

Gus Wiseman, Jan 25 2023

Keywords

Comments

The multiset of prime factors of n is row n of A027746.
A number's prime signature (row n of A124010) is the sequence of positive exponents in its prime factorization.

Examples

			The terms together with their prime factors begin:
      1: {}
      4: {2,2}
     27: {3,3,3}
    400: {2,2,2,2,5,5}
   3125: {5,5,5,5,5}
   9072: {2,2,2,2,3,3,3,3,7}
  10800: {2,2,2,2,3,3,3,5,5}
  14580: {2,2,3,3,3,3,3,3,5}
  24057: {3,3,3,3,3,3,3,11}
  35721: {3,3,3,3,3,3,7,7}
  50625: {3,3,3,3,5,5,5,5}
  73984: {2,2,2,2,2,2,2,2,17,17}
		

Crossrefs

The prime factors are A027746, mean A123528/A123529.
The prime signature is A124010, mean A088529/A088530.
For prime indices instead of factors we have A359903.
A058398 counts partitions by mean, see also A008284, A327482.
A067340 lists numbers whose prime signature has integer mean.
A078175 = numbers whose prime factors have integer mean, indices A316413.
A112798 = prime indices, length A001222, sum A056239, mean A326567/A326568.
A360005 gives median of prime indices (times two).

Programs

  • Mathematica
    prifac[n_]:=If[n==1,{},Flatten[ConstantArray@@@FactorInteger[n]]];
    prisig[n_]:=If[n==1,{},Last/@FactorInteger[n]];
    Select[Range[1000],Mean[prifac[#]]==Mean[prisig[#]]&]

A070014 Ceiling of number of prime factors of n divided by the number of n's distinct prime factors.

Original entry on oeis.org

1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 3, 2, 1, 1, 1, 5, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 3, 2, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 6, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 2, 1, 1, 1, 3, 4, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 3, 1, 2, 2, 2, 1, 1, 1, 2, 1, 1
Offset: 2

Views

Author

Rick L. Shepherd, Apr 11 2002

Keywords

Comments

a(n) is the ceiling of the average of the exponents in the prime factorization of n.

Examples

			a(12) = 2 because 12 = 2^2 * 3^1 and ceiling(bigomega(12)/omega(12)) = ceiling((2+1)/2) = 2. a(36) = 2 because 36 = 2^2 * 3^2 and ceiling(bigomega(36)/omega(36)) = ceiling((2+2)/2) = 2. a(60) = 2 because 60 = 2^2 * 3^1 * 5^1 and ceiling(bigomega(60)/omega(60)) = ceiling((2+1+1)/3) = 2. 36 is in A067340. 12 and 60 are in A070011.
		

Crossrefs

Cf. A001221 (omega(n)), A001222 (bigomega(n)), A067340 (ratio is an integer before ceil is applied), A070011 (ratio is not an integer), A070012 (floor of ratio), A070013 (ratio rounded), A046660 (bigomega(n)-omega(n)), A088529, A088530.

Programs

  • Mathematica
    Table[Ceiling[PrimeOmega[n]/PrimeNu[n]], {n, 2, 106}] (* Michael De Vlieger, Jul 12 2017 *)
  • PARI
    v=[]; for(n=2,150,v=concat(v,ceil(bigomega(n)/omega(n)))); v
    
  • Python
    from sympy import primefactors, ceiling
    def bigomega(n): return 0 if n==1 else bigomega(n//primefactors(n)[0]) + 1
    def omega(n): return len(primefactors(n))
    def a(n): return ceiling(bigomega(n)/omega(n))
    print([a(n) for n in range(2, 51)]) # Indranil Ghosh, Jul 13 2017
  • Scheme
    (define (A070014 n) (let ((a (A001222 n)) (b (A001221 n))) (if (zero? (modulo a b)) (/ a b) (+ 1 (/ (- a (modulo a b)) b))))) ;; Antti Karttunen, Jul 12 2017
    

Formula

a(n) = ceiling(bigomega(n)/omega(n)) for n>=2.

A360669 Nonprime numbers > 1 for which the prime indices have the same mean as their first differences.

Original entry on oeis.org

10, 39, 68, 115, 138, 259, 310, 328, 387, 517, 574, 636, 793, 795, 1034, 1168, 1206, 1241, 1281, 1340, 1534, 1691, 1825, 2212, 2278, 2328, 2343, 2369, 2370, 2727, 2774, 2905, 3081, 3277, 3818, 3924, 4064, 4074, 4247, 4268, 4360, 4539, 4850, 4905, 5243, 5335
Offset: 1

Views

Author

Gus Wiseman, Feb 18 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The terms together with their prime indices begin:
     1: {}
    10: {1,3}
    39: {2,6}
    68: {1,1,7}
   115: {3,9}
   138: {1,2,9}
   259: {4,12}
   310: {1,3,11}
   328: {1,1,1,13}
   387: {2,2,14}
   517: {5,15}
   574: {1,4,13}
   636: {1,1,2,16}
For example, the prime indices of 138 are {1,2,9}, with mean 4, and with first differences (1,7), with mean also 4, so 138 is in the sequence.
		

Crossrefs

These partitions are counted by A360670.
A058398 counts partitions by mean, see also A008284, A327482.
A112798 = prime indices, length A001222, sum A056239, mean A326567/A326568.
A124010 gives prime signature, mean A088529/A088530.
A301987 lists numbers whose sum of prime indices equals their product.
A316413 lists numbers whose prime indices have integer mean.
A334201 adds up all prime indices except the greatest.
A360614/A360615 = mean of first differences of 0-prepended prime indices.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[2,1000],Mean[prix[#]]==Mean[Differences[prix[#]]]&]
Previous Showing 11-20 of 27 results. Next