cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 26 results. Next

A379599 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of B(x)^k, where B(x) is the g.f. of A088714.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 3, 0, 1, 3, 7, 13, 0, 1, 4, 12, 32, 69, 0, 1, 5, 18, 58, 173, 419, 0, 1, 6, 25, 92, 321, 1054, 2809, 0, 1, 7, 33, 135, 523, 1971, 7039, 20353, 0, 1, 8, 42, 188, 790, 3248, 13158, 50632, 157199, 0, 1, 9, 52, 252, 1134, 4976, 21740, 94194, 387613, 1281993, 0
Offset: 0

Views

Author

Seiichi Manyama, Feb 27 2025

Keywords

Examples

			Square array begins:
  1,    1,    1,     1,     1,     1,     1, ...
  0,    1,    2,     3,     4,     5,     6, ...
  0,    3,    7,    12,    18,    25,    33, ...
  0,   13,   32,    58,    92,   135,   188, ...
  0,   69,  173,   321,   523,   790,  1134, ...
  0,  419, 1054,  1971,  3248,  4976,  7260, ...
  0, 2809, 7039, 13158, 21740, 33480, 49210, ...
		

Crossrefs

Columns k=0..1 give A000007, A088714.

Programs

  • PARI
    a(n, k) = if(k==0, 0^n, k*sum(j=0, n, binomial(n+j+k, j)/(n+j+k)*a(n-j, j)));

Formula

See A088714.

A213591 G.f. A(x) satisfies A( x - A(x)^2 ) = x.

Original entry on oeis.org

1, 1, 4, 24, 178, 1512, 14152, 142705, 1528212, 17211564, 202460400, 2474708496, 31310415376, 408815254832, 5495451727376, 75907303147652, 1075685334980240, 15618612118252960, 232102241507321384, 3526880759915999016, 54755450619399484512, 867928449982022915984
Offset: 1

Views

Author

Paul D. Hanna, Jun 14 2012

Keywords

Comments

Unsigned version of A139702.
Self-convolution is A276370.
Row sums of triangle A277295.

Examples

			G.f.: A(x) = x + x^2 + 4*x^3 + 24*x^4 + 178*x^5 + 1512*x^6 + 14152*x^7 +...
where A(x) = x + A(A(x))^2:
A(A(x)) = x + 2*x^2 + 10*x^3 + 69*x^4 + 568*x^5 + 5250*x^6 + 52792*x^7 +...
A(A(x))^2 = x^2 + 4*x^3 + 24*x^4 + 178*x^5 + 1512*x^6 + 14152*x^7 +...
The g.f. satisfies the series:
A(x) = x + A(x)^2 + d/dx A(x)^4/2! + d^2/dx^2 A(x)^6/3! + d^3/dx^3 A(x)^8/4! +...
Logarithmic series:
log(A(x)/x) = A(x)^2/x + [d/dx A(x)^4/x]/2! + [d^2/dx^2 A(x)^6/x]/3! + [d^3/dx^3 A(x)^8/x]/4! +...
Also, A(x) = x*G(A(x)^2/x) where G(x) = x/A(x/G(x)^2) is the g.f. of A212411:
G(x) = 1 + x + 2*x^2 + 7*x^3 + 36*x^4 + 235*x^5 + 1792*x^6 + 15261*x^7 +...
Also, A(x)^2 = x*F(A(x)) where F(x) is the g.f. of A213628:
F(x) = x + x^2 + 3*x^3 + 14*x^4 + 85*x^5 + 616*x^6 + 5072*x^7 + 46013*x^8 +...
		

Crossrefs

Programs

  • Mathematica
    terms = 22; A[] = 0; Do[A[x] = x + A[A[x]]^2 + O[x]^(terms+1) // Normal, terms+1]; CoefficientList[A[x], x] // Rest (* Jean-François Alcover, Jan 09 2018 *)
  • PARI
    {a(n)=local(A=x); if(n<1, 0, for(i=1, n, A=serreverse(x - A^2+x*O(x^n))); polcoeff(A, n))}
    
  • PARI
    {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
    {a(n)=local(A=x+x^2+x*O(x^n)); for(i=1, n, A=x+sum(m=1, n, Dx(m-1, A^(2*m))/m!)+x*O(x^n)); polcoeff(A, n)}
    
  • PARI
    {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
    {a(n)=local(A=x+x^2+x*O(x^n)); for(i=1, n, A=x*exp(sum(m=1, n, Dx(m-1, A^(2*m)/x)/m!)+x*O(x^n))); polcoeff(A, n)}
    for(n=1,21,print1(a(n),", "))
    
  • PARI
    b(n, k) = if(k==0, 0^n, k*sum(j=0, n, binomial(n+j+k, j)/(n+j+k)*b(n-j, 2*j)));
    a(n) = b(n-1, 1); \\ Seiichi Manyama, Jun 05 2025

Formula

G.f. satisfies:
(1) A(x) = x + A(A(x))^2.
(2) A(x) = x + Sum_{n>=1} d^(n-1)/dx^(n-1) A(x)^(2*n) / n!.
(3) A(x) = x*exp( Sum_{n>=1} d^(n-1)/dx^(n-1) A(x)^(2*n)/x / n! ).
(4) A(x) = x*G(A(x)^2/x) where G(x) = 1 + x*G(1-1/G(x))^2 is the g.f. of A212411.
(5) A(x)^2 = x*F(A(x)) where F(x) = 1 - (x^2/F(x))/F(x^2/F(x)) is the g.f. of A213628.
(6) x = A(A( x-x^2 - A(x)^2 )). - Paul D. Hanna, Jul 01 2012
(7) A(x) is the unique solution to variable A in the infinite system of simultaneous equations starting with:
A = x + B^2;
B = A + C^2;
C = B + D^2;
D = C + E^2; ...
where B = A(A(x)), C = A(A(A(x))), D = A(A(A(A(x)))), etc.
...
a(n) = Sum_{k=0..n-1} A277295(n,k).
From Seiichi Manyama, Jun 05 2025: (Start)
Let b(n,k) = [x^n] (A(x)/x)^k.
b(n,0) = 0^n; b(n,k) = k * Sum_{j=0..n} binomial(n+j+k,j)/(n+j+k) * b(n-j,2*j).
a(n) = b(n-1,1). (End)

A087949 G.f. satisfies A(x) = 1 + x*A(x*A(x)).

Original entry on oeis.org

1, 1, 1, 2, 5, 16, 59, 246, 1131, 5655, 30428, 174835, 1066334, 6870542, 46581883, 331237074, 2463361903, 19112314727, 154364077009, 1295325828045, 11273167827343, 101589943242179, 946577526626181, 9107029927925714, 90359115887726302, 923509462029444933
Offset: 0

Views

Author

Paul D. Hanna, Sep 16 2003

Keywords

Examples

			G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 5*x^4 + 16*x^5 +...
A(xA(x)) = 1 + x + 2*x^2 + 5*x^3 + 16*x^4 + 59*x^5 +...
Logarithmic series:
log(A(x)) = x/A(x) + [d/dx x^3*A(x)^2]*A(x)^(-4)/2! + [d^2/dx^2 x^5*A(x)^3]*A(x)^(-6)/3! + [d^3/dx^3 x^7*A(x)^4]*A(x)^(-8)/4! +...
Let G(x) = x*A(x) then
x = G(x*[1 - G(x) + 2*G(x)^2 - 5*G(x)^3 + 14*G(x)^4 - 42*G(x)^5 +-...])
where the unsigned coefficients are the Catalan numbers (A000108).
		

Crossrefs

Programs

  • Maple
    A:= proc(n) option remember; `if`(n=0, 1, (T->
          unapply(convert(series(1+x*T(x*T(x)), x, n+1)
          , polynom), x))(A(n-1)))
        end:
    a:= n-> coeff(A(n)(x), x, n):
    seq(a(n), n=0..25);  # Alois P. Heinz, May 15 2016
  • Mathematica
    a[n_] := (A=x; If[n<1, 0, For[i=1, i <= n, i++, A = InverseSeries[2*(x/(1 + Sqrt[1 + 4*A + x*O[x]^n]))]]]; SeriesCoefficient[A, {x, 0, n}]); Array[a, 26] (* Jean-François Alcover, Oct 04 2016, adapted from PARI *)
  • PARI
    {a(n)=my(A=x); if(n<1, 0, for(i=1,n,A=serreverse(2*x/(1 + sqrt(1+4*A +x*O(x^n))))); polcoeff(A, n))}
    
  • PARI
    {a(n,m=1)=if(n==0,1,if(m==0,0^n,sum(k=0,n,m*binomial(n-k+m,k)/(n-k+m)*a(n-k,k))))} \\ Paul D. Hanna, Jul 09 2009
    
  • PARI
    /* n-th Derivative: */
    {Dx(n,F)=my(D=F);for(i=1,n,D=deriv(D));D}
    /* G.f. */
    {a(n)=my(A=1+x+x*O(x^n));for(i=1,n,A=exp(sum(m=0,n,Dx(m,x^(2*m+1)*A^(m+1))*A^(-2*m-2)/(m+1)!)+x*O(x^n)));polcoeff(A,n)} \\ Paul D. Hanna, Dec 18 2010

Formula

Let G(x) = x*A(x), then the following statements hold:
* G(x) = x*(1 + sqrt(1 + 4*G(G(x))))/2;
* G(x) = Series_Reversion[2*x/(1 + sqrt(1 + 4*G(x)))].
- Paul D. Hanna, May 15 2008
From Paul D. Hanna, Apr 16 2007: (Start)
G.f. A(x) is the unique solution to variable A in the infinite system of simultaneous equations:
A = 1 + xB;
B = 1 + xAC;
C = 1 + xABD;
D = 1 + xABCE;
E = 1 + xABCDF ; ... (End)
From Paul D. Hanna, Jul 09 2009: (Start)
Let A(x)^m = Sum_{n>=0} a(n,m)*x^n, then
a(n,m) = Sum_{k=0..n} m*C(n-k+m,k)/(n-k+m) * a(n-k,k) with a(0,m)=1.
(End)
G.f. satisfies: A(x) = exp( Sum_{n>=0} [d^n/dx^n x^(2n+1)*A(x)^(n+1)] *A(x)^(-2n-2)/(n+1)! ). - Paul D. Hanna, Dec 18 2010

Extensions

Edited by N. J. A. Sloane, May 19 2008

A120971 G.f. A(x) satisfies A(x) = 1 + x*A(x)^2 * A( x*A(x)^2 )^2.

Original entry on oeis.org

1, 1, 4, 26, 218, 2151, 23854, 289555, 3783568, 52624689, 772928988, 11918181144, 192074926618, 3224153299106, 56213565222834, 1015694652332437, 18982833869517376, 366384235565593176, 7292660345274942402
Offset: 0

Views

Author

Paul D. Hanna, Jul 20 2006

Keywords

Examples

			G.f.: A(x) = 1 + x + 4*x^2 + 26*x^3 + 218*x^4 + 2151*x^5 + 23854*x^6 +...
From _Paul D. Hanna_, Apr 16 2007: G.f. A(x) is the unique solution to variable A in the infinite system of simultaneous equations:
A = 1 + x*B^2;
B = A*(1 + x*C^2);
C = B*(1 + x*D^2);
D = C*(1 + x*E^2);
E = D*(1 + x*F^2); ...
The above series begin:
B(x) = 1 + 2*x + 11*x^2 + 87*x^3 + 841*x^4 + 9288*x^5 + 113166*x^6 +...
C(x) = 1 + 3*x + 21*x^2 + 198*x^3 + 2204*x^4 + 27431*x^5 + 371102*x^6 +...
D(x) = 1 + 4*x + 34*x^2 + 374*x^3 + 4747*x^4 + 66350*x^5 + 996943*x^6 +...
E(x) = 1 + 5*x + 50*x^2 + 630*x^3 + 9015*x^4 + 140510*x^5 + 2334895*x^6 +...
F(x) = 1 + 6*x + 69*x^2 + 981*x^3 + 15658*x^4 + 270016*x^5 + 4933294*x^6 +...
		

Crossrefs

Programs

  • Mathematica
    m = 19; A[] = 0; Do[A[x] = 1 + x A[x]^2 A[x A[x]^2]^2 + O[x]^m, {m}];
    CoefficientList[A[x], x] (* Jean-François Alcover, Nov 07 2019 *)
  • PARI
    {a(n)=local(A,G=[1,1]);for(i=1,n,G=concat(G,0); G[ #G]=-Vec(subst(Ser(G),x,x/Ser(G)^2))[ #G]); A=Vec(((Ser(G)-1)/x)^(1/2));A[n+1]}
    
  • PARI
    a(n, k=1) = if(k==0, 0^n, k*sum(j=0, n, binomial(2*n+k, j)/(2*n+k)*a(n-j, 2*j))); \\ Seiichi Manyama, Mar 01 2025

Formula

G.f. A(x) satisfies:
(1) A(x) = G(G(x)-1),
(2) A(G(x)-1) = G(A(x)-1),
(3) A(x) = G(x*A(x)^2),
(4) A(x/G(x)^2) = G(x),
where G(x) is the g.f. of A120970 and satisfies G(x/G(x)^2) = 1 + x.
G.f. A(x) = F(x,1) where F(x,n) satisfies: F(x,n) = F(x,n-1)*(1 + x*F(x,n+1)^2) for n>0 with F(x,0)=1. - Paul D. Hanna, Apr 16 2007
Let B(x) = Sum_{n>=0} a(n)*x^(2*n+1), then B( x/(1+B(x)^2) ) = x. - Paul D. Hanna, Oct 30 2013
From Seiichi Manyama, Mar 01 2025: (Start)
Let a(n,k) = [x^n] A(x)^k.
a(n,0) = 0^n; a(n,k) = k * Sum_{j=0..n} binomial(2*n+k,j)/(2*n+k) * a(n-j,2*j). (End)

A091713 G.f. satisfies A(x) = x + x*A(A(A(x))).

Original entry on oeis.org

1, 1, 3, 15, 99, 781, 7001, 69253, 742071, 8506775, 103411463, 1324477033, 17785238513, 249432247233, 3642471258187, 55246757713367, 868523130653947, 14127076257342933, 237386074703124457, 4115341407421082869, 73516094755096807279, 1351801707136238290351
Offset: 1

Views

Author

Paul D. Hanna, Jan 31 2004, Jun 04 2008

Keywords

Comments

Conjecture: all terms are odd. - Paul D. Hanna, Dec 01 2024

Examples

			G.f.: A(x) = x + x^2 + 3*x^3 + 15*x^4 + 99*x^5 + 781*x^6 +...
From _Paul D. Hanna_, Apr 16 2007:
G.f. A(x) is the unique solution to variable A in the infinite system of simultaneous equations:
A = 1 + xC;
B = A*(1 + xD);
C = B*(1 + xE);
D = C*(1 + xF);
E = D*(1 + xG) ; ...
The solution to the variables in the system of equations are
A=A(x), B=A(A(x)), C=A(A(A(x))), D=A(A(A(A(x)))), etc., where:
A(x) = x + x^2 + 3*x^3 + 15*x^4 + 99*x^5 + 781*x^6 + 7001*x^7 +...
A(A(x)) = x + 2*x^2 + 8*x^3 + 46*x^4 + 330*x^5 + 2756*x^6 +...
A(A(A(x))) = x + 3*x^2 + 15*x^3 + 99*x^4 + 781*x^5 + 7001*x^6 +...
A(A(A(A(x)))) = x + 4*x^2 + 24*x^3 + 180*x^4 + 1564*x^5 +...
A(A(A(A(A(x))))) = x + 5*x^2 + 35*x^3 + 295*x^4 + 2815*x^5 +...
ALTERNATE GENERATING METHOD.
The g.f. A(x) equals the sum of products of even iterations of A(x):
A(x) = x + x*A_2(x) + x*A_2(x)*A_4(x) + x*A_2(x)*A_4(x)*A_6(x) + x*A_2(x)*A_4(x)*A_6(x)*A_8(x) +...+ Product_{k=0..n} A_{2*k}(x) +...
where A_n(x) = A_{n-1}(A(x)) is the n-th iteration of A(x) with A_0(x)=x.
		

Crossrefs

Programs

  • Mathematica
    Nest[x + x (# /. x -> # /. x -> #) &, O[x], 30][[3]] (* Vladimir Reshetnikov, Aug 08 2019 *)
  • PARI
    {a(n)=local(A);A=x+x^2;for(i=3,n, A=x+x*subst(A,x,subst(A,x,A))+x*O(x^n)); polcoeff(A,n,x)}
    
  • PARI
    /* Define the n-th iteration of F: */
    {ITERATE(F,n,p)=local(G=x);for(i=1,n,G=subst(F,x,G+x*O(x^p)));G}
    /* A(x) equals the sum of products of even iterations of A(x): */
    {a(n)=local(A=x);for(i=1,n,A=sum(m=0,n-1,prod(k=0,m,ITERATE(A,2*k,n)+x*O(x^n))));polcoeff(A,n)}

Formula

G.f. A(x) = F(x,1) where F(x,n) satisfies: F(x,n) = F(x,n-1)*(1 + x*F(x,n+2)) for n>0 with F(x,0)=1. - Paul D. Hanna, Apr 16 2007
G.f.: A(x) = G(x)/[1 + G(G(x))] where G(x) = A(A(x)) = g.f. of A141117.
G.f.: A(x) = Series_Reversion[ x/(1 + A(A(x))) ].
G.f. satisfies: A(x) = Sum_{n>=0} Product_{k=0..n} A_{2*k}(x), where A_n(x) denotes the n-th iteration of A(x) with A_0(x)=x. - Paul D. Hanna, Jul 21 2011

A139702 G.f. satisfies: x = A( x + A(x)^2 ).

Original entry on oeis.org

1, -1, 4, -24, 178, -1512, 14152, -142705, 1528212, -17211564, 202460400, -2474708496, 31310415376, -408815254832, 5495451727376, -75907303147652, 1075685334980240, -15618612118252960, 232102241507321384, -3526880759915999016
Offset: 1

Views

Author

Paul D. Hanna, Apr 30 2008, May 20 2008

Keywords

Comments

Signed version of A213591.

Examples

			G.f.: A(x) = x - x^2 + 4*x^3 - 24*x^4 + 178*x^5 - 1512*x^6 +-...
A(x)^2 = x^2 - 2*x^3 + 9*x^4 - 56*x^5 + 420*x^6 - 3572*x^7 +-...
where A(x + A(x)^2) = x.
Let G(x) = Series_Reversion( A(x) ) = x + A(x)^2, then:
G(x) = x + x^2 - 2*x^3 + 9*x^4 - 56*x^5 + 420*x^6 -+... and
G(G(x)) = x + 2*x^2 - 2*x^3 + 9*x^4 - 56*x^5 + 420*x^6 -+...
so that G(x) = G(G(x)) - x^2 = g.f. of A138740.
Logarithmic series:
log(A(x)/x) = -A(x)^2/x + [d/dx A(x)^4/x]/2! - [d^2/dx^2 A(x)^6/x]/3! + [d^3/dx^3 A(x)^8/x]/4! -+...
		

Crossrefs

Programs

  • Mathematica
    nmax = 20; sol = {a[1] -> 1}; nmin = Length[sol]+1;
    Do[A[x_] = Sum[a[k] x^k, {k, 0, n}] /. sol; eq = CoefficientList[x - A[x + A[x]^2] + O[x]^(n+1), x][[nmin;;]] == 0 /. sol; sol = sol ~Join~ Solve[eq][[1]], {n, nmin, nmax}];
    a /@ Range[nmax] /. sol (* Jean-François Alcover, Nov 06 2019 *)
  • PARI
    {a(n)=local(A=x); if(n<1, 0, for(i=1,n, A=serreverse(x + (A+x*O(x^n))^2)); polcoeff(A, n))}
    
  • PARI
    /* n-th Derivative: */
    {Dx(n,F)=local(D=F);for(i=1,n,D=deriv(D));D}
    /* G.f.: [Paul D. Hanna, Dec 18 2010] */
    {a(n)=local(A=x-x^2+x*O(x^n));for(i=1,n,
    A=x*exp(sum(m=0,n,(-1)^(m+1)*Dx(m,A^(2*m+2)/x)/(m+1)!)+x*O(x^n)));polcoeff(A,n)}

Formula

Let G(x) = Series_Reversion( A(x) ) = x + A(x)^2, then G(x) = G(G(x)) - x^2 = g.f. of A138740.
G.f. satisfies: A(x) = x*G(-A(x)^2/x) where G(x) = 1 + x*G(1-1/G(x))^2 is the g.f. of A212411.
G.f.: A(x)/x is the unique solution to variable A in the infinite system of simultaneous equations starting with:
A = 1 - x*B^2;
B = A - x*C^2;
C = B - x*D^2;
D = C - x*E^2;
E = D - x*F^2; ...
G.f. satisfies: A(x) = x*exp( Sum_{n>=0} (-1)^(n+1)*[d^n/dx^n A(x)^(2n+2)/x]/(n+1)! ). [Paul D. Hanna, Dec 18 2010]

A088717 G.f. satisfies: A(x) = 1 + x*A(x)^2*A(x*A(x)^2).

Original entry on oeis.org

1, 1, 3, 14, 84, 596, 4785, 42349, 406287, 4176971, 45640572, 526788153, 6392402793, 81247489335, 1078331283648, 14907041720241, 214187010762831, 3192620516380376, 49287883925072010, 786925082232918304, 12976244331714379149, 220728563512663520510
Offset: 0

Views

Author

Paul D. Hanna, Oct 12 2003 and Mar 10 2007

Keywords

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 14*x^3 + 84*x^4 + 596*x^5 + 4785*x^6 +...
G.f. A(x) is the unique solution to variable A in the infinite system of simultaneous equations:
A = 1 + x*A*B;
B = A*(1 + x*B*C);
C = B*(1 + x*C*D);
D = C*(1 + x*D*E);
E = D*(1 + x*E*F); ...
where B(x) = A(x)*A(x*A(x)^2), C(x) = A(x)*B(x*A(x)^2),  D(x) = A(x)*C(x*A(x)^2), ...
Expansions of a few of the functions described above begin:
B(x) = 1 + 2*x + 9*x^2 + 55*x^3 + 402*x^4 + 3328*x^5 + 30312*x^6 +...
C(x) = 1 + 3*x + 18*x^2 + 138*x^3 + 1218*x^4 + 11856*x^5 + 124467*x^6 +...
D(x) = 1 + 4*x + 30*x^2 + 278*x^3 + 2901*x^4 + 32846*x^5 + 395913*x^6 +...
ALTERNATE GENERATING METHOD.
Suppose functions A=A(x), B=B(x), C=C(x), etc., satisfy:
A = 1 + x*A^2*B,
B = 1 + x*(A*B)^2*C,
C = 1 + x*(A*B*C)^2*D,
D = 1 + x*(A*B*C*D)^2*E, etc.,
then B(x) = A(x*A(x)^2), C(x) = B(x*A(x)^2), D(x) = C(x*A(x)^2), etc.,
where A(x) = 1 + x*A(x)^2*A(x*A(x)^2) is the g.f. of this sequence.
Expansions of a few of the functions described above begin:
B(x) = 1 + x + 5*x^2 + 33*x^3 + 256*x^4 + 2223*x^5 + 21058*x^6 +...
C(x) = 1 + x + 7*x^2 + 60*x^3 + 578*x^4 + 6045*x^5 + 67421*x^6 +...
D(x) = 1 + x + 9*x^2 + 95*x^3 + 1098*x^4 + 13526*x^5 + 175176*x^6 +...
		

Crossrefs

Programs

  • Mathematica
    m = 22; A[] = 0; Do[A[x] = 1 + x A[x]^2 A[x A[x]^2] + O[x]^m, {m}];
    CoefficientList[A[x], x] (* Jean-François Alcover, Nov 07 2019 *)
  • PARI
    {a(n)=local(A=1+x);for(i=0,n,A=1+x*A^2*subst(A,x,x*A^2+x*O(x^n)));polcoeff(A,n)}
    
  • PARI
    /* a(n) = [x^n] (1+x*A(x))^(2*n+1)/(2*n+1): */
    {a(n)=local(A=1+x); for(i=0, n, A=sum(m=0,n,polcoeff((1+x*A+x*O(x^m))^(2*m+1)/(2*m+1),m)*x^m)+x*O(x^n));polcoeff(A,n)}
    
  • PARI
    {a(n, m=1)=if(n==0, 1, if(m==0, 0^n, sum(k=0, n, m*binomial(2*n+m, k)/(2*n+m)*a(n-k, k))))}

Formula

a(n) = coefficient of x^n in (1+x*A(x))^(2*n+1)/(2*n+1) where A(x) = Sum_{n=0} a(n)*x^n.
Recurrence:
Let A(x)^m = Sum_{n>=0} a(n,m)*x^n with a(0,m)=1, then
a(n,m) = Sum_{k=0..n} m*C(2n+m,k)/(2n+m) * a(n-k,k). [Paul D. Hanna, Dec 16 2010]
G.f. A(x) = F(x,1) where F(x,n) satisfies: F(x,n) = F(x,n-1)*(1 + x*F(x,n)*F(x,n+1)) for n>0 with F(x,0)=1. - Paul D. Hanna, Apr 16 2007

A360950 Expansion of g.f. A(x) satisfying A(x) = Sum_{n>=0} d^n/dx^n x^(2*n) * A(x)^n / n!.

Original entry on oeis.org

1, 2, 12, 108, 1240, 16932, 264740, 4631320, 89270316, 1875586380, 42610756408, 1040307155304, 27157913296228, 754950111249488, 22267948484559720, 694746226969477744, 22863695087986373968, 791675941860401322852, 28776089467457429038620, 1095679176790207081120360
Offset: 0

Views

Author

Paul D. Hanna, Feb 26 2023

Keywords

Examples

			G.f.: A(x) = 1 + 2*x + 12*x^2 + 108*x^3 + 1240*x^4 + 16932*x^5 + 264740*x^6 + 4631320*x^7 + 89270316*x^8 + 1875586380*x^9 + ...
where
A(x) = 1 + (d/dx x^2*A(x)) + (d^2/dx^2 x^4*A(x)^2)/2! + (d^3/dx^3 x^6*A(x)^3)/3! + (d^4/dx^4 x^8*A(x)^4)/4! + (d^5/dx^5 x^10*A(x)^5)/5! + (d^6/dx^6 x^12*A(x)^6)/6! + ... + (d^n/dx^n x^(2*n)*A(x)^n)/n! + ...
Related series.
Let B(x) = Series_Reversion(x - x^2*A(x)), which begins
B(x) = x + x^2 + 4*x^3 + 27*x^4 + 248*x^5 + 2822*x^6 + 37820*x^7 + 578915*x^8 + 9918924*x^9 + 187558638*x^10 + ... + A229619(n)*x^n + ...
then A(x) = B'(x) and
B(x) = x * exp( x*A(x) + (d/dx x^3*A(x)^2)/2! + (d^2/dx^2 x^5*A(x)^3)/3! + (d^3/dx^3 x^7*A(x)^4)/4! + (d^4/dx^4 x^9*A(x)^5)/5! + (d^5/dx^5 x^11*A(x)^6)/6! + ... + (d^(n-1)/dx^(n-1) x^(2*n-1)*A(x)^n)/n! + ... ).
		

Crossrefs

Programs

  • PARI
    {Dx(n, F) = my(D=F); for(i=1, n, D=deriv(D)); D}
    {a(n) = my(A=1); for(i=1, n, A = sum(m=0, n, Dx(m, x^(2*m)*A^m/m!)) +O(x^(n+1))); polcoeff(A, n)}
    for(n=0, 25, print1(a(n), ", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies:
(1) A(x) = Sum_{n>=0} d^n/dx^n x^(2*n) * A(x)^n / n!.
(2) A(x) = d/dx Series_Reversion(x - x^2*A(x)).
(3) B(x - x^2*A(x)) = x where B(x) = x * exp( Sum_{n>=1} d^(n-1)/dx^(n-1) x^(2*n-1) * A(x)^n / n! ) is the g.f. of A229619.
(4) a(n) = (n+1) * A229619(n+1) for n >= 0.
a(n) ~ c * n! * n^alfa / LambertW(1)^n, where alfa = 3*LambertW(1) + 1/(1 + LambertW(1)) = 2.33953361459... and c = 0.1926079501120681239... - Vaclav Kotesovec, Feb 27 2023

A291820 G.f. A(x,y) satisfies: A( x - x*y*A(x,y), y) = x + x*(1-y)*A(x,y), where the coefficients T(n,k) of x^n*y^k form a triangle read by rows n>=1, for k=0..n-1.

Original entry on oeis.org

1, 1, 0, 1, 2, 0, 1, 7, 5, 0, 1, 16, 38, 14, 0, 1, 30, 157, 189, 42, 0, 1, 50, 477, 1245, 904, 132, 0, 1, 77, 1197, 5616, 8791, 4242, 429, 0, 1, 112, 2632, 19881, 55566, 57854, 19723, 1430, 0, 1, 156, 5250, 59327, 265204, 491947, 363880, 91366, 4862, 0, 1, 210, 9714, 155783, 1035442, 3062271, 4039551, 2220933, 423124, 16796, 0, 1, 275, 16929, 370205, 3472513, 15217674, 31979723, 31463341, 13285415, 1963169, 58786, 0, 1, 352, 28094, 811877, 10331673, 63678254, 197983540, 310618856, 235959185, 78419541, 9138416, 208012, 0
Offset: 1

Views

Author

Paul D. Hanna, Sep 01 2017

Keywords

Comments

More generally, we have the following related identity.
Given functions F and G with F(0)=0, F'(0)=1, G(0)=0, G'(0)=0,
if F(x - y*G(x)) = x + (1-y)*G(x), then
(C1) F(x) = x + G( y*F(x) + (1-y)*x ),
(C2) y*F(x) + (1-y)*x = Series_Reversion(x - y*G(x)),
(C3) F(x) = x + G(x + y*G(x + y*G(x + y*G(x +...)))),
(C4) F(x) = x + Sum_{n>=1} y^(n-1) * d^(n-1)/dx^(n-1) G(x)^n / n!.
The g.f. A(x,y) of this sequence equals F(x) in the above when G(x) = x*F(x).

Examples

			G.f.: A(x,y)  = x + x^2 + (2*y + 1)*x^3 + (5*y^2 + 7*y + 1)*x^4 +
(14*y^3 + 38*y^2 + 16*y + 1)*x^5 +
(42*y^4 + 189*y^3 + 157*y^2 + 30*y + 1)*x^6 +
(132*y^5 + 904*y^4 + 1245*y^3 + 477*y^2 + 50*y + 1)*x^7 +
(429*y^6 + 4242*y^5 + 8791*y^4 + 5616*y^3 + 1197*y^2 + 77*y + 1)*x^8 +
(1430*y^7 + 19723*y^6 + 57854*y^5 + 55566*y^4 + 19881*y^3 + 2632*y^2 + 112*y + 1)*x^9 +
(4862*y^8 + 91366*y^7 + 363880*y^6 + 491947*y^5 + 265204*y^4 + 59327*y^3 + 5250*y^2 + 156*y + 1)*x^10 +
(16796*y^9 + 423124*y^8 + 2220933*y^7 + 4039551*y^6 + 3062271*y^5 + 1035442*y^4 + 155783*y^3 + 9714*y^2 + 210*y + 1)*x^11 +
(58786*y^10 + 1963169*y^9 + 13285415*y^8 + 31463341*y^7 + 31979723*y^6 + 15217674*y^5 + 3472513*y^4 + 370205*y^3 + 16929*y^2 + 275*y + 1)*x^12 +...
such that
A( x - x*y*A(x,y), y)  =  x + x*(1-y)*A(x,y).
Also,
A(x,y) = x + Z*A(Z, y) where Z = y*A(x,y) + (1-y)*x.
...
This triangle of coefficients T(n,k) of x^n*y^k in g.f. A(x,y) begins:
1;
1, 0;
1, 2, 0;
1, 7, 5, 0;
1, 16, 38, 14, 0;
1, 30, 157, 189, 42, 0;
1, 50, 477, 1245, 904, 132, 0;
1, 77, 1197, 5616, 8791, 4242, 429, 0;
1, 112, 2632, 19881, 55566, 57854, 19723, 1430, 0;
1, 156, 5250, 59327, 265204, 491947, 363880, 91366, 4862, 0;
1, 210, 9714, 155783, 1035442, 3062271, 4039551, 2220933, 423124, 16796, 0;
1, 275, 16929, 370205, 3472513, 15217674, 31979723, 31463341, 13285415, 1963169, 58786, 0;
1, 352, 28094, 811877, 10331673, 63678254, 197983540, 310618856, 235959185, 78419541, 9138416, 208012, 0;
1, 442, 44759, 1666522, 27896583, 232505790, 1014785477, 2355151627, 2859824058, 1721756609, 458956233, 42718416, 742900, 0; ...
RELATED SEQUENCES.
Given T(n,k) is the coefficient of x^n*y^k in g.f. A(x,y),
if b(n) = Sum_{k=0..n-1} T(n,k) * p^k * q^(n-k-1)
then B(x) = Sum_{n>=1} b(n)*x^n satisfies
(E1) B(x - p*x*B(x)) = x + (q-p)*x*B(x)
(E2) B(x)  =  x + Z*B(Z) where Z = p*B(x) + (q-p)*x.
...
G.f.s of columns of this triangle begin:
C.0: 1/(1-x)
C.1: (2 - x)/(1-x)^4
C.2: (5 + 3*x - 4*x^2 + x^3)/(1-x)^7
C.3: (14 + 49*x - 15*x^2 - 9*x^3 + 6*x^4 - x^5)/(1-x)^10
C.4: (42 + 358*x + 315*x^2 - 217*x^3 + 30*x^4 + 18*x^5 - 8*x^6 + x^7)/(1-x)^13
C.5: (132 + 2130*x + 5822*x^2 + 1403*x^3 - 1681*x^4 + 602*x^5 - 50*x^6 - 30*x^7 + 10*x^8 - x^9)/(1-x)^16
C.6: (429 + 11572*x + 62502*x^2 + 82763*x^3 + 2951*x^4 - 9760*x^5 + 5395*x^6 - 1329*x^7 + 75*x^8 + 45*x^9 - 12*x^10 + x^11)/(1-x)^19
C.7: (1430 + 59906*x + 541211*x^2 + 1506161*x^3 + 1217687*x^4 + 16416*x^5 - 35746*x^6 + 36682*x^7 - 13502*x^8 + 2550*x^9 - 105*x^10 - 63*x^11 + 14*x^12 - x^13)/(1-x)^22
C.8: (4862 + 301574*x + 4165915*x^2 + 19578410*x^3 + 34788033*x^4 + 20899306*x^5 + 1681742*x^6 + 174039*x^7 + 195964*x^8 - 103084*x^9 + 28953*x^10 - 4444*x^11 + 140*x^12 + 84*x^13 - 16*x^14 + x^15)/(1-x)^25
...
Thus A(x, y*(1-x)^3)*(1-x) = x + 2*y*x^3 + (5*y^2 - y)*x^4 + (14*y^3 + 3*y^2)*x^5 + (42*y^4 + 49*y^3 - 4*y^2)*x^6 + (132*y^5 + 358*y^4 - 15*y^3 + y^2)*x^7 +...
		

Crossrefs

Cf. A088714 (row sums), A291821 (central terms), A291822 (diagonal).
Cf. A277295 (variant).

Programs

  • Mathematica
    nmax = 13; A[x_] = x;
    Do[A[x_] = x + (y A[x] + (1-y) x) A[y A[x] + (1-y) x] + x O[x]^n // Normal // Expand // Collect[#, x]&, {n, nmax}];
    T[n_, k_] := SeriesCoefficient[A[x], {x, 0, n}, {y, 0, k}];
    Table[T[n, k], {n, 1, nmax}, {k, 0, n-1}] // Flatten (* Jean-François Alcover, Oct 20 2019 *)
  • PARI
    {T(n, k) = my(A=x); for(i=1, n, A = x + subst(x*A, x, y*A + (1-y)*x +x*O(x^n)) ); polcoeff(polcoeff(A, n, x), k, y)}
    for(n=1, 12, for(k=0, n-1, print1(T(n, k), ", ")); print(""))

Formula

G.f. A(x,y) also satisfies:
(G1) A(x,y) = x + A( y*A(x,y) + x*(1-y), y).
(G2) y*A(x,y) + x*(1-y) = Series_Reversion( x - x*y*A(x,y) ).
(G3) x*y + (1-y)*B(x,y) = Series_Reversion( x + x*(1-y)*A(x,y) ), where B( A(x,y), y) = x.
(G4) A(x,y) = x + Sum_{n>=1} y^(n-1) * d^(n-1)/dx^(n-1) A(x,y)^n * x^n / n!.
In formulas 2 and 3, the series reversion is taken with respect to variable x.
Formulas for terms:
(T1) T(n,0) = 1.
(T2) T(n,1) = (n-1)*n*(n+4)/6. for n>=1.
(T3) T(n+1,n-1) = binomial(2*n,n)/(n+1) = A000108(n) for n>=1.
Row sums:
(S1) Sum_{k=0..n-1} T(n,k) = A088714(n-1).
(S2) Sum_{k=0..n-1} T(n,k) * 2^(n-k-1) = A276358(n).
(S3) Sum_{k=0..n-1} T(n,k) * 3^(n-k-1) = A291744(n).
(S4) Sum_{k=0..n-1} T(n,k) * 2^k * 3^(n-k-1) = A291743(n).
(S5) Sum_{k=0..n-1} T(n,k) * 2^k = A291813(n).
(S6) Sum_{k=0..n-1} T(n,k) * 3^k = A291814(n).
(S7) Sum_{k=0..n-1} T(n,k) * 4^k = A291815(n).
(S8) Sum_{k=0..n-1} T(n,k) * 3^k * 2^(n-k-1) = A291816(n).
(S9) Sum_{k=0..n-1} T(n,k) * 3^k * 4^(n-k-1) = A291817(n).
(S10) Sum_{k=0..n-1} T(n,k) * 4^k * 3^(n-k-1) = A291818(n).
(S11) Sum_{k=0..n-1} T(n,k) * 4^(n-k-1) = A291819(n).

A360973 Expansion of g.f. A(x) satisfying A(x) = Sum_{n>=0} d^n/dx^n x^(3*n) * A(x)^n / n!.

Original entry on oeis.org

1, 3, 30, 462, 9243, 223014, 6232239, 196780545, 6905085381, 266134485876, 11167349876424, 506653305313320, 24713399794830075, 1289888647516181583, 71744797404818298768, 4237233894492578488668, 264870390088867267319274, 17473793269024825938396135
Offset: 0

Views

Author

Paul D. Hanna, Feb 27 2023

Keywords

Examples

			G.f.: A(x) = 1 + 3*x^2 + 30*x^4 + 462*x^6 + 9243*x^8 + 223014*x^10 + 6232239*x^12 + 196780545*x^14 + 6905085381*x^16 + ... + a(n)*x^(2*n) + ...
where
A(x) = 1 + (d/dx x^3*A(x)) + (d^2/dx^2 x^6*A(x)^2)/2! + (d^3/dx^3 x^9*A(x)^3)/3! + (d^4/dx^4 x^12*A(x)^4)/4! + (d^5/dx^5 x^15*A(x)^5)/5! + (d^6/dx^6 x^18*A(x)^6)/6! + ... + (d^n/dx^n x^(3*n)*A(x)^n)/n! + ...
Related series.
Let B(x) = Series_Reversion(x - x^3*A(x)), which begins
B(x) = x + x^3 + 6*x^5 + 66*x^7 + 1027*x^9 + 20274*x^11 + 479403*x^13 + 13118703*x^15 + 406181493*x^17 + ... + A360976(n)*x^(2*n-1) + ...
then A(x) = B'(x) and
B(x) = x * exp( x^2*A(x) + (d/dx x^5*A(x)^2)/2! + (d^2/dx^2 x^8*A(x)^3)/3! + (d^3/dx^3 x^11*A(x)^4)/4! + (d^4/dx^4 x^14*A(x)^5)/5! + (d^5/dx^5 x^17*A(x)^6)/6! + ... + (d^(n-1)/dx^(n-1) x^(3*n-1)*A(x)^n)/n! + ... ).
		

Crossrefs

Programs

  • PARI
    {Dx(n, F) = my(D=F); for(i=1, n, D=deriv(D)); D}
    {a(n) = my(A=1); for(i=1, n, A = sum(m=0, n, Dx(m, x^(3*m)*A^m/m!)) +O(x^(2*n+1))); polcoeff(A, 2*n)}
    for(n=0, 25, print1(a(n), ", "))
    
  • PARI
    /* Using series reversion (faster) */
    {a(n) = my(A=1); for(i=1, n, A = deriv( serreverse(x - x^3*A +O(x^(2*n+3))))); polcoeff(A, 2*n)}
    for(n=0, 25, print1(a(n), ", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n)*x^(2*n) may be defined by the following.
(1) A(x) = Sum_{n>=0} d^n/dx^n x^(3*n) * A(x)^n / n!.
(2) A(x) = d/dx Series_Reversion(x - x^3*A(x)).
(3) B(x - x^3*A(x)) = x where B(x) = x * exp( Sum_{n>=1} d^(n-1)/dx^(n-1) x^(3*n-1) * A(x)^n / n! ) is the g.f. of A360976.
(4) a(n) = (2*n+1) * A360976(n+1) for n >= 0.
a(n) ~ c * n! * n^alfa * 2^n / LambertW(1)^n, where alfa = 1.50465021094584... and c = 0.36053267424501... - Vaclav Kotesovec, Feb 28 2023
alfa = (9*LambertW(1) - 1 + 3/(1 + LambertW(1)))/4. - Vaclav Kotesovec, Mar 13 2023
Showing 1-10 of 26 results. Next