A379599
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of B(x)^k, where B(x) is the g.f. of A088714.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 3, 0, 1, 3, 7, 13, 0, 1, 4, 12, 32, 69, 0, 1, 5, 18, 58, 173, 419, 0, 1, 6, 25, 92, 321, 1054, 2809, 0, 1, 7, 33, 135, 523, 1971, 7039, 20353, 0, 1, 8, 42, 188, 790, 3248, 13158, 50632, 157199, 0, 1, 9, 52, 252, 1134, 4976, 21740, 94194, 387613, 1281993, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, ...
0, 3, 7, 12, 18, 25, 33, ...
0, 13, 32, 58, 92, 135, 188, ...
0, 69, 173, 321, 523, 790, 1134, ...
0, 419, 1054, 1971, 3248, 4976, 7260, ...
0, 2809, 7039, 13158, 21740, 33480, 49210, ...
-
a(n, k) = if(k==0, 0^n, k*sum(j=0, n, binomial(n+j+k, j)/(n+j+k)*a(n-j, j)));
A213591
G.f. A(x) satisfies A( x - A(x)^2 ) = x.
Original entry on oeis.org
1, 1, 4, 24, 178, 1512, 14152, 142705, 1528212, 17211564, 202460400, 2474708496, 31310415376, 408815254832, 5495451727376, 75907303147652, 1075685334980240, 15618612118252960, 232102241507321384, 3526880759915999016, 54755450619399484512, 867928449982022915984
Offset: 1
G.f.: A(x) = x + x^2 + 4*x^3 + 24*x^4 + 178*x^5 + 1512*x^6 + 14152*x^7 +...
where A(x) = x + A(A(x))^2:
A(A(x)) = x + 2*x^2 + 10*x^3 + 69*x^4 + 568*x^5 + 5250*x^6 + 52792*x^7 +...
A(A(x))^2 = x^2 + 4*x^3 + 24*x^4 + 178*x^5 + 1512*x^6 + 14152*x^7 +...
The g.f. satisfies the series:
A(x) = x + A(x)^2 + d/dx A(x)^4/2! + d^2/dx^2 A(x)^6/3! + d^3/dx^3 A(x)^8/4! +...
Logarithmic series:
log(A(x)/x) = A(x)^2/x + [d/dx A(x)^4/x]/2! + [d^2/dx^2 A(x)^6/x]/3! + [d^3/dx^3 A(x)^8/x]/4! +...
Also, A(x) = x*G(A(x)^2/x) where G(x) = x/A(x/G(x)^2) is the g.f. of A212411:
G(x) = 1 + x + 2*x^2 + 7*x^3 + 36*x^4 + 235*x^5 + 1792*x^6 + 15261*x^7 +...
Also, A(x)^2 = x*F(A(x)) where F(x) is the g.f. of A213628:
F(x) = x + x^2 + 3*x^3 + 14*x^4 + 85*x^5 + 616*x^6 + 5072*x^7 + 46013*x^8 +...
-
terms = 22; A[] = 0; Do[A[x] = x + A[A[x]]^2 + O[x]^(terms+1) // Normal, terms+1]; CoefficientList[A[x], x] // Rest (* Jean-François Alcover, Jan 09 2018 *)
-
{a(n)=local(A=x); if(n<1, 0, for(i=1, n, A=serreverse(x - A^2+x*O(x^n))); polcoeff(A, n))}
-
{Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
{a(n)=local(A=x+x^2+x*O(x^n)); for(i=1, n, A=x+sum(m=1, n, Dx(m-1, A^(2*m))/m!)+x*O(x^n)); polcoeff(A, n)}
-
{Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
{a(n)=local(A=x+x^2+x*O(x^n)); for(i=1, n, A=x*exp(sum(m=1, n, Dx(m-1, A^(2*m)/x)/m!)+x*O(x^n))); polcoeff(A, n)}
for(n=1,21,print1(a(n),", "))
-
b(n, k) = if(k==0, 0^n, k*sum(j=0, n, binomial(n+j+k, j)/(n+j+k)*b(n-j, 2*j)));
a(n) = b(n-1, 1); \\ Seiichi Manyama, Jun 05 2025
A087949
G.f. satisfies A(x) = 1 + x*A(x*A(x)).
Original entry on oeis.org
1, 1, 1, 2, 5, 16, 59, 246, 1131, 5655, 30428, 174835, 1066334, 6870542, 46581883, 331237074, 2463361903, 19112314727, 154364077009, 1295325828045, 11273167827343, 101589943242179, 946577526626181, 9107029927925714, 90359115887726302, 923509462029444933
Offset: 0
G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 5*x^4 + 16*x^5 +...
A(xA(x)) = 1 + x + 2*x^2 + 5*x^3 + 16*x^4 + 59*x^5 +...
Logarithmic series:
log(A(x)) = x/A(x) + [d/dx x^3*A(x)^2]*A(x)^(-4)/2! + [d^2/dx^2 x^5*A(x)^3]*A(x)^(-6)/3! + [d^3/dx^3 x^7*A(x)^4]*A(x)^(-8)/4! +...
Let G(x) = x*A(x) then
x = G(x*[1 - G(x) + 2*G(x)^2 - 5*G(x)^3 + 14*G(x)^4 - 42*G(x)^5 +-...])
where the unsigned coefficients are the Catalan numbers (A000108).
-
A:= proc(n) option remember; `if`(n=0, 1, (T->
unapply(convert(series(1+x*T(x*T(x)), x, n+1)
, polynom), x))(A(n-1)))
end:
a:= n-> coeff(A(n)(x), x, n):
seq(a(n), n=0..25); # Alois P. Heinz, May 15 2016
-
a[n_] := (A=x; If[n<1, 0, For[i=1, i <= n, i++, A = InverseSeries[2*(x/(1 + Sqrt[1 + 4*A + x*O[x]^n]))]]]; SeriesCoefficient[A, {x, 0, n}]); Array[a, 26] (* Jean-François Alcover, Oct 04 2016, adapted from PARI *)
-
{a(n)=my(A=x); if(n<1, 0, for(i=1,n,A=serreverse(2*x/(1 + sqrt(1+4*A +x*O(x^n))))); polcoeff(A, n))}
-
{a(n,m=1)=if(n==0,1,if(m==0,0^n,sum(k=0,n,m*binomial(n-k+m,k)/(n-k+m)*a(n-k,k))))} \\ Paul D. Hanna, Jul 09 2009
-
/* n-th Derivative: */
{Dx(n,F)=my(D=F);for(i=1,n,D=deriv(D));D}
/* G.f. */
{a(n)=my(A=1+x+x*O(x^n));for(i=1,n,A=exp(sum(m=0,n,Dx(m,x^(2*m+1)*A^(m+1))*A^(-2*m-2)/(m+1)!)+x*O(x^n)));polcoeff(A,n)} \\ Paul D. Hanna, Dec 18 2010
A120971
G.f. A(x) satisfies A(x) = 1 + x*A(x)^2 * A( x*A(x)^2 )^2.
Original entry on oeis.org
1, 1, 4, 26, 218, 2151, 23854, 289555, 3783568, 52624689, 772928988, 11918181144, 192074926618, 3224153299106, 56213565222834, 1015694652332437, 18982833869517376, 366384235565593176, 7292660345274942402
Offset: 0
G.f.: A(x) = 1 + x + 4*x^2 + 26*x^3 + 218*x^4 + 2151*x^5 + 23854*x^6 +...
From _Paul D. Hanna_, Apr 16 2007: G.f. A(x) is the unique solution to variable A in the infinite system of simultaneous equations:
A = 1 + x*B^2;
B = A*(1 + x*C^2);
C = B*(1 + x*D^2);
D = C*(1 + x*E^2);
E = D*(1 + x*F^2); ...
The above series begin:
B(x) = 1 + 2*x + 11*x^2 + 87*x^3 + 841*x^4 + 9288*x^5 + 113166*x^6 +...
C(x) = 1 + 3*x + 21*x^2 + 198*x^3 + 2204*x^4 + 27431*x^5 + 371102*x^6 +...
D(x) = 1 + 4*x + 34*x^2 + 374*x^3 + 4747*x^4 + 66350*x^5 + 996943*x^6 +...
E(x) = 1 + 5*x + 50*x^2 + 630*x^3 + 9015*x^4 + 140510*x^5 + 2334895*x^6 +...
F(x) = 1 + 6*x + 69*x^2 + 981*x^3 + 15658*x^4 + 270016*x^5 + 4933294*x^6 +...
-
m = 19; A[] = 0; Do[A[x] = 1 + x A[x]^2 A[x A[x]^2]^2 + O[x]^m, {m}];
CoefficientList[A[x], x] (* Jean-François Alcover, Nov 07 2019 *)
-
{a(n)=local(A,G=[1,1]);for(i=1,n,G=concat(G,0); G[ #G]=-Vec(subst(Ser(G),x,x/Ser(G)^2))[ #G]); A=Vec(((Ser(G)-1)/x)^(1/2));A[n+1]}
-
a(n, k=1) = if(k==0, 0^n, k*sum(j=0, n, binomial(2*n+k, j)/(2*n+k)*a(n-j, 2*j))); \\ Seiichi Manyama, Mar 01 2025
A091713
G.f. satisfies A(x) = x + x*A(A(A(x))).
Original entry on oeis.org
1, 1, 3, 15, 99, 781, 7001, 69253, 742071, 8506775, 103411463, 1324477033, 17785238513, 249432247233, 3642471258187, 55246757713367, 868523130653947, 14127076257342933, 237386074703124457, 4115341407421082869, 73516094755096807279, 1351801707136238290351
Offset: 1
G.f.: A(x) = x + x^2 + 3*x^3 + 15*x^4 + 99*x^5 + 781*x^6 +...
From _Paul D. Hanna_, Apr 16 2007:
G.f. A(x) is the unique solution to variable A in the infinite system of simultaneous equations:
A = 1 + xC;
B = A*(1 + xD);
C = B*(1 + xE);
D = C*(1 + xF);
E = D*(1 + xG) ; ...
The solution to the variables in the system of equations are
A=A(x), B=A(A(x)), C=A(A(A(x))), D=A(A(A(A(x)))), etc., where:
A(x) = x + x^2 + 3*x^3 + 15*x^4 + 99*x^5 + 781*x^6 + 7001*x^7 +...
A(A(x)) = x + 2*x^2 + 8*x^3 + 46*x^4 + 330*x^5 + 2756*x^6 +...
A(A(A(x))) = x + 3*x^2 + 15*x^3 + 99*x^4 + 781*x^5 + 7001*x^6 +...
A(A(A(A(x)))) = x + 4*x^2 + 24*x^3 + 180*x^4 + 1564*x^5 +...
A(A(A(A(A(x))))) = x + 5*x^2 + 35*x^3 + 295*x^4 + 2815*x^5 +...
ALTERNATE GENERATING METHOD.
The g.f. A(x) equals the sum of products of even iterations of A(x):
A(x) = x + x*A_2(x) + x*A_2(x)*A_4(x) + x*A_2(x)*A_4(x)*A_6(x) + x*A_2(x)*A_4(x)*A_6(x)*A_8(x) +...+ Product_{k=0..n} A_{2*k}(x) +...
where A_n(x) = A_{n-1}(A(x)) is the n-th iteration of A(x) with A_0(x)=x.
-
Nest[x + x (# /. x -> # /. x -> #) &, O[x], 30][[3]] (* Vladimir Reshetnikov, Aug 08 2019 *)
-
{a(n)=local(A);A=x+x^2;for(i=3,n, A=x+x*subst(A,x,subst(A,x,A))+x*O(x^n)); polcoeff(A,n,x)}
-
/* Define the n-th iteration of F: */
{ITERATE(F,n,p)=local(G=x);for(i=1,n,G=subst(F,x,G+x*O(x^p)));G}
/* A(x) equals the sum of products of even iterations of A(x): */
{a(n)=local(A=x);for(i=1,n,A=sum(m=0,n-1,prod(k=0,m,ITERATE(A,2*k,n)+x*O(x^n))));polcoeff(A,n)}
A139702
G.f. satisfies: x = A( x + A(x)^2 ).
Original entry on oeis.org
1, -1, 4, -24, 178, -1512, 14152, -142705, 1528212, -17211564, 202460400, -2474708496, 31310415376, -408815254832, 5495451727376, -75907303147652, 1075685334980240, -15618612118252960, 232102241507321384, -3526880759915999016
Offset: 1
G.f.: A(x) = x - x^2 + 4*x^3 - 24*x^4 + 178*x^5 - 1512*x^6 +-...
A(x)^2 = x^2 - 2*x^3 + 9*x^4 - 56*x^5 + 420*x^6 - 3572*x^7 +-...
where A(x + A(x)^2) = x.
Let G(x) = Series_Reversion( A(x) ) = x + A(x)^2, then:
G(x) = x + x^2 - 2*x^3 + 9*x^4 - 56*x^5 + 420*x^6 -+... and
G(G(x)) = x + 2*x^2 - 2*x^3 + 9*x^4 - 56*x^5 + 420*x^6 -+...
so that G(x) = G(G(x)) - x^2 = g.f. of A138740.
Logarithmic series:
log(A(x)/x) = -A(x)^2/x + [d/dx A(x)^4/x]/2! - [d^2/dx^2 A(x)^6/x]/3! + [d^3/dx^3 A(x)^8/x]/4! -+...
-
nmax = 20; sol = {a[1] -> 1}; nmin = Length[sol]+1;
Do[A[x_] = Sum[a[k] x^k, {k, 0, n}] /. sol; eq = CoefficientList[x - A[x + A[x]^2] + O[x]^(n+1), x][[nmin;;]] == 0 /. sol; sol = sol ~Join~ Solve[eq][[1]], {n, nmin, nmax}];
a /@ Range[nmax] /. sol (* Jean-François Alcover, Nov 06 2019 *)
-
{a(n)=local(A=x); if(n<1, 0, for(i=1,n, A=serreverse(x + (A+x*O(x^n))^2)); polcoeff(A, n))}
-
/* n-th Derivative: */
{Dx(n,F)=local(D=F);for(i=1,n,D=deriv(D));D}
/* G.f.: [Paul D. Hanna, Dec 18 2010] */
{a(n)=local(A=x-x^2+x*O(x^n));for(i=1,n,
A=x*exp(sum(m=0,n,(-1)^(m+1)*Dx(m,A^(2*m+2)/x)/(m+1)!)+x*O(x^n)));polcoeff(A,n)}
A088717
G.f. satisfies: A(x) = 1 + x*A(x)^2*A(x*A(x)^2).
Original entry on oeis.org
1, 1, 3, 14, 84, 596, 4785, 42349, 406287, 4176971, 45640572, 526788153, 6392402793, 81247489335, 1078331283648, 14907041720241, 214187010762831, 3192620516380376, 49287883925072010, 786925082232918304, 12976244331714379149, 220728563512663520510
Offset: 0
G.f.: A(x) = 1 + x + 3*x^2 + 14*x^3 + 84*x^4 + 596*x^5 + 4785*x^6 +...
G.f. A(x) is the unique solution to variable A in the infinite system of simultaneous equations:
A = 1 + x*A*B;
B = A*(1 + x*B*C);
C = B*(1 + x*C*D);
D = C*(1 + x*D*E);
E = D*(1 + x*E*F); ...
where B(x) = A(x)*A(x*A(x)^2), C(x) = A(x)*B(x*A(x)^2), D(x) = A(x)*C(x*A(x)^2), ...
Expansions of a few of the functions described above begin:
B(x) = 1 + 2*x + 9*x^2 + 55*x^3 + 402*x^4 + 3328*x^5 + 30312*x^6 +...
C(x) = 1 + 3*x + 18*x^2 + 138*x^3 + 1218*x^4 + 11856*x^5 + 124467*x^6 +...
D(x) = 1 + 4*x + 30*x^2 + 278*x^3 + 2901*x^4 + 32846*x^5 + 395913*x^6 +...
ALTERNATE GENERATING METHOD.
Suppose functions A=A(x), B=B(x), C=C(x), etc., satisfy:
A = 1 + x*A^2*B,
B = 1 + x*(A*B)^2*C,
C = 1 + x*(A*B*C)^2*D,
D = 1 + x*(A*B*C*D)^2*E, etc.,
then B(x) = A(x*A(x)^2), C(x) = B(x*A(x)^2), D(x) = C(x*A(x)^2), etc.,
where A(x) = 1 + x*A(x)^2*A(x*A(x)^2) is the g.f. of this sequence.
Expansions of a few of the functions described above begin:
B(x) = 1 + x + 5*x^2 + 33*x^3 + 256*x^4 + 2223*x^5 + 21058*x^6 +...
C(x) = 1 + x + 7*x^2 + 60*x^3 + 578*x^4 + 6045*x^5 + 67421*x^6 +...
D(x) = 1 + x + 9*x^2 + 95*x^3 + 1098*x^4 + 13526*x^5 + 175176*x^6 +...
-
m = 22; A[] = 0; Do[A[x] = 1 + x A[x]^2 A[x A[x]^2] + O[x]^m, {m}];
CoefficientList[A[x], x] (* Jean-François Alcover, Nov 07 2019 *)
-
{a(n)=local(A=1+x);for(i=0,n,A=1+x*A^2*subst(A,x,x*A^2+x*O(x^n)));polcoeff(A,n)}
-
/* a(n) = [x^n] (1+x*A(x))^(2*n+1)/(2*n+1): */
{a(n)=local(A=1+x); for(i=0, n, A=sum(m=0,n,polcoeff((1+x*A+x*O(x^m))^(2*m+1)/(2*m+1),m)*x^m)+x*O(x^n));polcoeff(A,n)}
-
{a(n, m=1)=if(n==0, 1, if(m==0, 0^n, sum(k=0, n, m*binomial(2*n+m, k)/(2*n+m)*a(n-k, k))))}
A360950
Expansion of g.f. A(x) satisfying A(x) = Sum_{n>=0} d^n/dx^n x^(2*n) * A(x)^n / n!.
Original entry on oeis.org
1, 2, 12, 108, 1240, 16932, 264740, 4631320, 89270316, 1875586380, 42610756408, 1040307155304, 27157913296228, 754950111249488, 22267948484559720, 694746226969477744, 22863695087986373968, 791675941860401322852, 28776089467457429038620, 1095679176790207081120360
Offset: 0
G.f.: A(x) = 1 + 2*x + 12*x^2 + 108*x^3 + 1240*x^4 + 16932*x^5 + 264740*x^6 + 4631320*x^7 + 89270316*x^8 + 1875586380*x^9 + ...
where
A(x) = 1 + (d/dx x^2*A(x)) + (d^2/dx^2 x^4*A(x)^2)/2! + (d^3/dx^3 x^6*A(x)^3)/3! + (d^4/dx^4 x^8*A(x)^4)/4! + (d^5/dx^5 x^10*A(x)^5)/5! + (d^6/dx^6 x^12*A(x)^6)/6! + ... + (d^n/dx^n x^(2*n)*A(x)^n)/n! + ...
Related series.
Let B(x) = Series_Reversion(x - x^2*A(x)), which begins
B(x) = x + x^2 + 4*x^3 + 27*x^4 + 248*x^5 + 2822*x^6 + 37820*x^7 + 578915*x^8 + 9918924*x^9 + 187558638*x^10 + ... + A229619(n)*x^n + ...
then A(x) = B'(x) and
B(x) = x * exp( x*A(x) + (d/dx x^3*A(x)^2)/2! + (d^2/dx^2 x^5*A(x)^3)/3! + (d^3/dx^3 x^7*A(x)^4)/4! + (d^4/dx^4 x^9*A(x)^5)/5! + (d^5/dx^5 x^11*A(x)^6)/6! + ... + (d^(n-1)/dx^(n-1) x^(2*n-1)*A(x)^n)/n! + ... ).
-
{Dx(n, F) = my(D=F); for(i=1, n, D=deriv(D)); D}
{a(n) = my(A=1); for(i=1, n, A = sum(m=0, n, Dx(m, x^(2*m)*A^m/m!)) +O(x^(n+1))); polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
A291820
G.f. A(x,y) satisfies: A( x - x*y*A(x,y), y) = x + x*(1-y)*A(x,y), where the coefficients T(n,k) of x^n*y^k form a triangle read by rows n>=1, for k=0..n-1.
Original entry on oeis.org
1, 1, 0, 1, 2, 0, 1, 7, 5, 0, 1, 16, 38, 14, 0, 1, 30, 157, 189, 42, 0, 1, 50, 477, 1245, 904, 132, 0, 1, 77, 1197, 5616, 8791, 4242, 429, 0, 1, 112, 2632, 19881, 55566, 57854, 19723, 1430, 0, 1, 156, 5250, 59327, 265204, 491947, 363880, 91366, 4862, 0, 1, 210, 9714, 155783, 1035442, 3062271, 4039551, 2220933, 423124, 16796, 0, 1, 275, 16929, 370205, 3472513, 15217674, 31979723, 31463341, 13285415, 1963169, 58786, 0, 1, 352, 28094, 811877, 10331673, 63678254, 197983540, 310618856, 235959185, 78419541, 9138416, 208012, 0
Offset: 1
G.f.: A(x,y) = x + x^2 + (2*y + 1)*x^3 + (5*y^2 + 7*y + 1)*x^4 +
(14*y^3 + 38*y^2 + 16*y + 1)*x^5 +
(42*y^4 + 189*y^3 + 157*y^2 + 30*y + 1)*x^6 +
(132*y^5 + 904*y^4 + 1245*y^3 + 477*y^2 + 50*y + 1)*x^7 +
(429*y^6 + 4242*y^5 + 8791*y^4 + 5616*y^3 + 1197*y^2 + 77*y + 1)*x^8 +
(1430*y^7 + 19723*y^6 + 57854*y^5 + 55566*y^4 + 19881*y^3 + 2632*y^2 + 112*y + 1)*x^9 +
(4862*y^8 + 91366*y^7 + 363880*y^6 + 491947*y^5 + 265204*y^4 + 59327*y^3 + 5250*y^2 + 156*y + 1)*x^10 +
(16796*y^9 + 423124*y^8 + 2220933*y^7 + 4039551*y^6 + 3062271*y^5 + 1035442*y^4 + 155783*y^3 + 9714*y^2 + 210*y + 1)*x^11 +
(58786*y^10 + 1963169*y^9 + 13285415*y^8 + 31463341*y^7 + 31979723*y^6 + 15217674*y^5 + 3472513*y^4 + 370205*y^3 + 16929*y^2 + 275*y + 1)*x^12 +...
such that
A( x - x*y*A(x,y), y) = x + x*(1-y)*A(x,y).
Also,
A(x,y) = x + Z*A(Z, y) where Z = y*A(x,y) + (1-y)*x.
...
This triangle of coefficients T(n,k) of x^n*y^k in g.f. A(x,y) begins:
1;
1, 0;
1, 2, 0;
1, 7, 5, 0;
1, 16, 38, 14, 0;
1, 30, 157, 189, 42, 0;
1, 50, 477, 1245, 904, 132, 0;
1, 77, 1197, 5616, 8791, 4242, 429, 0;
1, 112, 2632, 19881, 55566, 57854, 19723, 1430, 0;
1, 156, 5250, 59327, 265204, 491947, 363880, 91366, 4862, 0;
1, 210, 9714, 155783, 1035442, 3062271, 4039551, 2220933, 423124, 16796, 0;
1, 275, 16929, 370205, 3472513, 15217674, 31979723, 31463341, 13285415, 1963169, 58786, 0;
1, 352, 28094, 811877, 10331673, 63678254, 197983540, 310618856, 235959185, 78419541, 9138416, 208012, 0;
1, 442, 44759, 1666522, 27896583, 232505790, 1014785477, 2355151627, 2859824058, 1721756609, 458956233, 42718416, 742900, 0; ...
RELATED SEQUENCES.
Given T(n,k) is the coefficient of x^n*y^k in g.f. A(x,y),
if b(n) = Sum_{k=0..n-1} T(n,k) * p^k * q^(n-k-1)
then B(x) = Sum_{n>=1} b(n)*x^n satisfies
(E1) B(x - p*x*B(x)) = x + (q-p)*x*B(x)
(E2) B(x) = x + Z*B(Z) where Z = p*B(x) + (q-p)*x.
...
G.f.s of columns of this triangle begin:
C.0: 1/(1-x)
C.1: (2 - x)/(1-x)^4
C.2: (5 + 3*x - 4*x^2 + x^3)/(1-x)^7
C.3: (14 + 49*x - 15*x^2 - 9*x^3 + 6*x^4 - x^5)/(1-x)^10
C.4: (42 + 358*x + 315*x^2 - 217*x^3 + 30*x^4 + 18*x^5 - 8*x^6 + x^7)/(1-x)^13
C.5: (132 + 2130*x + 5822*x^2 + 1403*x^3 - 1681*x^4 + 602*x^5 - 50*x^6 - 30*x^7 + 10*x^8 - x^9)/(1-x)^16
C.6: (429 + 11572*x + 62502*x^2 + 82763*x^3 + 2951*x^4 - 9760*x^5 + 5395*x^6 - 1329*x^7 + 75*x^8 + 45*x^9 - 12*x^10 + x^11)/(1-x)^19
C.7: (1430 + 59906*x + 541211*x^2 + 1506161*x^3 + 1217687*x^4 + 16416*x^5 - 35746*x^6 + 36682*x^7 - 13502*x^8 + 2550*x^9 - 105*x^10 - 63*x^11 + 14*x^12 - x^13)/(1-x)^22
C.8: (4862 + 301574*x + 4165915*x^2 + 19578410*x^3 + 34788033*x^4 + 20899306*x^5 + 1681742*x^6 + 174039*x^7 + 195964*x^8 - 103084*x^9 + 28953*x^10 - 4444*x^11 + 140*x^12 + 84*x^13 - 16*x^14 + x^15)/(1-x)^25
...
Thus A(x, y*(1-x)^3)*(1-x) = x + 2*y*x^3 + (5*y^2 - y)*x^4 + (14*y^3 + 3*y^2)*x^5 + (42*y^4 + 49*y^3 - 4*y^2)*x^6 + (132*y^5 + 358*y^4 - 15*y^3 + y^2)*x^7 +...
-
nmax = 13; A[x_] = x;
Do[A[x_] = x + (y A[x] + (1-y) x) A[y A[x] + (1-y) x] + x O[x]^n // Normal // Expand // Collect[#, x]&, {n, nmax}];
T[n_, k_] := SeriesCoefficient[A[x], {x, 0, n}, {y, 0, k}];
Table[T[n, k], {n, 1, nmax}, {k, 0, n-1}] // Flatten (* Jean-François Alcover, Oct 20 2019 *)
-
{T(n, k) = my(A=x); for(i=1, n, A = x + subst(x*A, x, y*A + (1-y)*x +x*O(x^n)) ); polcoeff(polcoeff(A, n, x), k, y)}
for(n=1, 12, for(k=0, n-1, print1(T(n, k), ", ")); print(""))
A360973
Expansion of g.f. A(x) satisfying A(x) = Sum_{n>=0} d^n/dx^n x^(3*n) * A(x)^n / n!.
Original entry on oeis.org
1, 3, 30, 462, 9243, 223014, 6232239, 196780545, 6905085381, 266134485876, 11167349876424, 506653305313320, 24713399794830075, 1289888647516181583, 71744797404818298768, 4237233894492578488668, 264870390088867267319274, 17473793269024825938396135
Offset: 0
G.f.: A(x) = 1 + 3*x^2 + 30*x^4 + 462*x^6 + 9243*x^8 + 223014*x^10 + 6232239*x^12 + 196780545*x^14 + 6905085381*x^16 + ... + a(n)*x^(2*n) + ...
where
A(x) = 1 + (d/dx x^3*A(x)) + (d^2/dx^2 x^6*A(x)^2)/2! + (d^3/dx^3 x^9*A(x)^3)/3! + (d^4/dx^4 x^12*A(x)^4)/4! + (d^5/dx^5 x^15*A(x)^5)/5! + (d^6/dx^6 x^18*A(x)^6)/6! + ... + (d^n/dx^n x^(3*n)*A(x)^n)/n! + ...
Related series.
Let B(x) = Series_Reversion(x - x^3*A(x)), which begins
B(x) = x + x^3 + 6*x^5 + 66*x^7 + 1027*x^9 + 20274*x^11 + 479403*x^13 + 13118703*x^15 + 406181493*x^17 + ... + A360976(n)*x^(2*n-1) + ...
then A(x) = B'(x) and
B(x) = x * exp( x^2*A(x) + (d/dx x^5*A(x)^2)/2! + (d^2/dx^2 x^8*A(x)^3)/3! + (d^3/dx^3 x^11*A(x)^4)/4! + (d^4/dx^4 x^14*A(x)^5)/5! + (d^5/dx^5 x^17*A(x)^6)/6! + ... + (d^(n-1)/dx^(n-1) x^(3*n-1)*A(x)^n)/n! + ... ).
-
{Dx(n, F) = my(D=F); for(i=1, n, D=deriv(D)); D}
{a(n) = my(A=1); for(i=1, n, A = sum(m=0, n, Dx(m, x^(3*m)*A^m/m!)) +O(x^(2*n+1))); polcoeff(A, 2*n)}
for(n=0, 25, print1(a(n), ", "))
-
/* Using series reversion (faster) */
{a(n) = my(A=1); for(i=1, n, A = deriv( serreverse(x - x^3*A +O(x^(2*n+3))))); polcoeff(A, 2*n)}
for(n=0, 25, print1(a(n), ", "))
Showing 1-10 of 26 results.
Comments