A308497
Square array A(n,k), n >= 1, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f. log(1 + Sum_{j>=1} binomial(j+k-1,k) * x^j/j).
Original entry on oeis.org
1, 1, 0, 1, 1, 1, 1, 2, 2, 1, 1, 3, 5, 6, 8, 1, 4, 10, 15, 24, 26, 1, 5, 17, 34, 54, 120, 194, 1, 6, 26, 69, 104, 240, 720, 1142, 1, 7, 37, 126, 204, 200, 1350, 5040, 9736, 1, 8, 50, 211, 408, -330, -400, 9450, 40320, 81384, 1, 9, 65, 330, 794, -1704, -12510, -2800, 78120, 362880, 823392
Offset: 1
Square array begins:
1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, ...
1, 2, 5, 10, 17, 26, ...
1, 6, 15, 34, 69, 126, ...
8, 24, 54, 104, 204, 408, ...
26, 120, 240, 200, -330, -1704, ...
194, 720, 1350, -400, -12510, -51696, ...
-
T[n_, k_] := T[n, k] = ((n+k-1)! - Sum[Binomial[n-1,j] * (j+k-1)! * T[n-j,k], {j,1,n-1}])/k!; Table[T[k, n - k], {n, 1, 11}, {k, 1, n}] // Flatten (* Amiram Eldar, May 12 2021 *)
A079642
Matrix product of unsigned Stirling1-triangle |A008275(n,k)| and Stirling1-triangle A008275(n,k).
Original entry on oeis.org
1, 0, 1, 1, 0, 1, 1, 4, 0, 1, 8, 5, 10, 0, 1, 26, 58, 15, 20, 0, 1, 194, 217, 238, 35, 35, 0, 1, 1142, 2035, 1008, 728, 70, 56, 0, 1, 9736, 13470, 11611, 3444, 1848, 126, 84, 0, 1, 81384, 134164, 85410, 47815, 9660, 4116, 210, 120, 0, 1, 823392, 1243770, 983059
Offset: 1
1; 0,1; 1,0,1; 1,4,0,1; 8,5,10,0,1; 26,58,15,20,0,1; ...
-
# The function BellMatrix is defined in A264428.
# Adds (1, 0, 0, 0, ..) as column 0.
BellMatrix(n -> add((-1)^n*(k-1)!*combinat:-stirling1(n+1, k), k=1..n+1), 9); # Peter Luschny, Jan 26 2016
-
BellMatrix[f_, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
B = BellMatrix[Function[n, Sum[(-1)^n*(k-1)! StirlingS1[n+1, k], {k, 1, n+1} ] ], rows = 12];
Table[B[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 28 2018, after Peter Luschny *)
A330388
Expansion of e.g.f. Sum_{k>=1} (-1)^(k + 1) * log(1 + x)^k / (k * (1 - log(1 + x)^k)).
Original entry on oeis.org
1, 0, 7, -37, 338, -2816, 28418, -340334, 5015080, -84244704, 1536606168, -29753884392, 609895549872, -13243687082016, 305507366834832, -7523621131117296, 198844500026698752, -5649686902983730560, 171839087043420258432, -5545292300345590210944
Offset: 1
-
nmax = 20; CoefficientList[Series[Sum[(-1)^(k + 1) Log[1 + x]^k/(k (1 - Log[1 + x]^k)), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]! // Rest
Table[Sum[StirlingS1[n, k] (k - 1)! Sum[Mod[d, 2] d, {d, Divisors[k]}], {k, 1, n}], {n, 1, 20}]
nmax = 20; Rest[CoefficientList[Series[Sum[Log[1 + Log[1 + x]^k], {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]!] (* Vaclav Kotesovec, Dec 15 2019 *)
A336440
a(n) = (n!)^n * [x^n] -log(1 + Sum_{k>=1} (-x)^k / k^n).
Original entry on oeis.org
0, 1, 1, 53, 65656, 4306202624, 21250781850448256, 11198392471992778644752768, 847058443993661249394101877997568000, 11916672812223274564264480372420932763474540363776, 39215070895580530235582705162664184972620228444352744200981184512
Offset: 0
-
Table[(n!)^n SeriesCoefficient[-Log[1 + Sum[(-x)^k/k^n, {k, 1, n}]], {x, 0, n}], {n, 0, 10}]
b[n_, k_] := If[n == 0, 0, (-1)^(n + 1) ((n - 1)!)^k - (1/n) Sum[(-1)^(n - j) (Binomial[n, j] (n - j - 1)!)^k j b[j, k], {j, 1, n - 1}]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 10}]
A325873
T(n, k) = [x^k] Sum_{k=0..n} |Stirling1(n, k)|*FallingFactorial(x, k), triangle read by rows, for n >= 0 and 0 <= k <= n.
Original entry on oeis.org
1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 4, 0, 1, 0, 8, 5, 10, 0, 1, 0, 26, 58, 15, 20, 0, 1, 0, 194, 217, 238, 35, 35, 0, 1, 0, 1142, 2035, 1008, 728, 70, 56, 0, 1, 0, 9736, 13470, 11611, 3444, 1848, 126, 84, 0, 1, 0, 81384, 134164, 85410, 47815, 9660, 4116, 210, 120, 0, 1
Offset: 0
Triangle starts:
[0] [1]
[1] [0, 1]
[2] [0, 0, 1]
[3] [0, 1, 0, 1]
[4] [0, 1, 4, 0, 1]
[5] [0, 8, 5, 10, 0, 1]
[6] [0, 26, 58, 15, 20, 0, 1]
[7] [0, 194, 217, 238, 35, 35, 0, 1]
[8] [0, 1142, 2035, 1008, 728, 70, 56, 0, 1]
[9] [0, 9736, 13470, 11611, 3444, 1848, 126, 84, 0, 1]
-
p[n_] := Sum[Abs[StirlingS1[n, k]] FactorialPower[x, k], {k, 0, n}];
Table[CoefficientList[FunctionExpand[p[n]], x], {n, 0, 9}] // Flatten
-
T(n, k) = sum(j=k, n, abs(stirling(n, j, 1))*stirling(j, k, 1)); \\ Seiichi Manyama, Apr 18 2025
-
def a_row(n):
s = sum(stirling_number1(n,k)*falling_factorial(x,k) for k in (0..n))
return expand(s).list()
[a_row(n) for n in (0..10)]
A341575
E.g.f.: log(1 - log(1 - x))^2 / 2.
Original entry on oeis.org
1, 0, 4, 5, 58, 217, 2035, 13470, 134164, 1243770, 14129410, 164244808, 2151576620, 29671566836, 444758323628, 7055358559376, 119546765395744, 2139179551573104, 40486788832168944, 805969129348431936, 16860672502118423136, 369459637224850523808, 8467140450141232328160
Offset: 2
-
nmax = 24; CoefficientList[Series[Log[1 - Log[1 - x]]^2/2, {x, 0, nmax}], x] Range[0, nmax]! // Drop[#, 2] &
Table[Sum[Abs[StirlingS1[n, k]] StirlingS1[k, 2], {k, 2, n}], {n, 2, 24}]
A075792
E.g.f.: 1 + log(1+f(x)) where f(x) = log(1/(2-exp(x))) = e.g.f. for A000629.
Original entry on oeis.org
1, 1, 1, 2, 8, 44, 302, 2512, 24558, 275676, 3493862, 49339784, 768182846, 13071470788, 241332513606, 4804601266896, 102599581877918, 2339270285673068, 56716397892998246, 1457071974028941400, 39538338850995279294, 1130018112921128323668, 33928819073838398622662
Offset: 0
A306037
Expansion of e.g.f. 1/(1 + log(1 - log(1 + x))).
Original entry on oeis.org
1, 1, 2, 7, 31, 178, 1200, 9588, 86592, 887086, 10035164, 125472246, 1705102394, 25175822644, 399387494956, 6801042408728, 123348694663480, 2379855020533664, 48569042602254128, 1047134236970183664, 23748242269316806752, 565834452464428045872, 14117321495269290091440
Offset: 0
1/(1 + log(1 - log(1 + x))) = 1 + x + 2*x^2/2! + 7*x^3/3! + 31*x^4/4! + 178*x^5/5! + 1200*x^6/6! + ...
-
a:=series(1/(1+log(1-log(1+x))),x=0,23): seq(n!*coeff(a,x,n),n=0..22); # Paolo P. Lava, Mar 26 2019
-
nmax = 22; CoefficientList[Series[1/(1 + Log[1 - Log[1 + x]]), {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[Sum[StirlingS1[n, k] Abs[StirlingS1[k, j]] j!, {j, 0, k}], {k, 0, n}], {n, 0, 22}]
a[0] = 1; a[n_] := a[n] = Sum[Sum[(j - 1)! StirlingS1[k, j], {j, 1, k}] a[n - k]/k!, {k, 1, n}]; Table[n! a[n], {n, 0, 22}]
A306038
Expansion of e.g.f. (1 + x)/(1 - log(1 + x)).
Original entry on oeis.org
1, 2, 3, 5, 12, 34, 122, 482, 2328, 11640, 71952, 424368, 3312240, 21357504, 217045488, 1351338864, 19990187520, 89379824256, 2631270916224, 892036259712, 507945420198144, -3068802187635456, 142961233091051520, -1849617314640322560, 55640352746480440320
Offset: 0
(1 + x)/(1 - log(1 + x)) = 1 + 2*x + 3*x^2/2! + 5*x^3/3! + 12*x^4/4! + 34*x^5/5! + 122*x^6/6! + ...
-
S:= series((1+x)/(1-log(1+x)),x,51):
seq(coeff(S,x,j)*j!,j=0..50); # Robert Israel, Jun 19 2018
-
nmax = 24; CoefficientList[Series[(1 + x)/(1 - Log[1 + x]), {x, 0, nmax}], x] Range[0, nmax]!
FullSimplify[Table[Sum[StirlingS1[n, k] E Gamma[1 + k, 1], {k, 0, n}], {n, 0, 24}]]
A307125
Expansion of e.g.f. log(1 - log(1 - x*exp(x))).
Original entry on oeis.org
0, 1, 2, 4, 17, 123, 1052, 10568, 125750, 1726189, 26730394, 460982300, 8766443952, 182229703043, 4110207945794, 99970680376908, 2608221938476016, 72656914458625593, 2152355976206481570, 67562405794276542004, 2240111797037473955984, 78229640115171735522015, 2870092624821982184377202
Offset: 0
-
a:=series(log(1-log(1-x*exp(x))),x=0,23): seq(n!*coeff(a,x,n),n=0..22); # Paolo P. Lava, Apr 03 2019
-
nmax = 22; CoefficientList[Series[Log[1 - Log[1 - x Exp[x]]], {x, 0, nmax}], x] Range[0, nmax]!
-
my(x = 'x + O('x^30)); concat(0, Vec(serlaplace(log(1 - log(1 - x*exp(x)))))) \\ Michel Marcus, Mar 26 2019
Comments