cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 46 results. Next

A277564 Let {c(i)} = A007916 denote the sequence of numbers > 1 which are not perfect powers. Every positive integer n has a unique representation as a tower n = c(x_1)^c(x_2)^c(x_3)^...^c(x_k), where the exponents are nested from the right. The sequence is an irregular triangle read by rows, where the n-th row lists n followed by x_1, ..., x_k.

Original entry on oeis.org

1, 2, 1, 3, 2, 4, 1, 1, 5, 3, 6, 4, 7, 5, 8, 1, 2, 9, 2, 1, 10, 6, 11, 7, 12, 8, 13, 9, 14, 10, 15, 11, 16, 1, 1, 1, 17, 12, 18, 13, 19, 14, 20, 15, 21, 16, 22, 17, 23, 18, 24, 19, 25, 3, 1, 26, 20, 27, 2, 2, 28, 21, 29, 22, 30, 23, 31, 24, 32, 1, 3, 33, 25, 34, 26, 35, 27, 36, 4, 1, 37, 28, 38, 29, 39, 30, 40, 31
Offset: 1

Views

Author

Gus Wiseman, Oct 20 2016

Keywords

Comments

The row lengths are A288636(n) + 1. - Gus Wiseman, Jun 12 2017
See A278028 for a version in which row n simply lists x_1, x_2, ..., x_k (omitting the initial n).

Examples

			1 is represented by the empty sequence (), by convention.
Successive rows of the triangle are as follows (c(k) denotes the k-th non-prime-power, A007916(k)):
2, 1,
3, 2,
4, 1, 1,
5, 3,
6, 4, because 6 = c(4)
7, 5,
8, 1, 2, because 8 = 2^3 = c(1)^c(2)
9, 2, 1,
10, 6,
11, 7,
...
16, 1, 1, 1, because 16 = 2^4 = c(1)^4 = c(1)^(c(1)^2) = c[1]^(c[1]^c[1])
17, 12,
...
This sequence represents a bijection N -> Q where Q is the set of all finite sequences of positive integers: 1->(), 2->(1), 3->(2), 4->(1 1), 5->(3), 6->(4), 7->(5), 8->(1 2), 9->(2 1), ...
		

Crossrefs

Programs

  • Maple
    See link.
  • Mathematica
    nn=10000;radicalQ[1]:=False;radicalQ[n_]:=SameQ[GCD@@FactorInteger[n][[All,2]],1];
    hyperfactor[1]:={};hyperfactor[n_?radicalQ]:={n};hyperfactor[n_]:=With[{g=GCD@@FactorInteger[n][[All,2]]},Prepend[hyperfactor[g],Product[Apply[Power[#1,#2/g]&,r],{r,FactorInteger[n]}]]];
    rad[0]:=1;rad[n_?Positive]:=rad[n]=NestWhile[#+1&,rad[n-1]+1,Not[radicalQ[#]]&];Set@@@Array[radPi[rad[#]]==#&,nn];
    Flatten[Join[{#},radPi/@hyperfactor[#]]&/@Range[nn]]

Extensions

Edited by N. J. A. Sloane, Nov 09 2016

A316782 Number of achiral tree-factorizations of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Jul 13 2018

Keywords

Comments

A factorization of n is a finite nonempty multiset of positive integers greater than 1 with product n. An achiral tree-factorization of n is either (case 1) the number n itself or (case 2) a finite constant multiset of two or more achiral tree-factorizations, one of each factor in a factorization of n.
a(n) is also the number of ways to write n as a left-nested power-tower ((a^b)^c)^... of positive integers greater than one. For example, the a(64) = 6 ways are 64, 8^2, 4^3, 2^6, (2^3)^2, (2^2)^3.
a(n) depends only on the prime signature of n. - Andrew Howroyd, Nov 18 2018

Examples

			The a(1296) = 4 achiral tree-factorizations are 1296, (36*36), (6*6*6*6), ((6*6)*(6*6)).
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=1+Sum[a[d],{d,n^(1/Rest[Divisors[GCD@@FactorInteger[n][[All,2]]]])}];
    Array[a,100]
  • PARI
    a(n)={my(z, e=ispower(n,,&z)); 1 + if(e, sumdiv(e, d, if(dAndrew Howroyd, Nov 18 2018

Formula

a(n) = 1 + Sum_{n = d^k, k>1} a(d).
a(p^n) = A067824(n) for prime p. - Andrew Howroyd, Nov 18 2018

A295924 Number of twice-factorizations of n of type (R,P,R).

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 1, 4, 3, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 4, 1, 1, 1, 1, 8, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 17, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Nov 30 2017

Keywords

Comments

a(n) is the number of ways to choose an integer partition of a divisor of A052409(n).

Examples

			The a(16) = 8 twice-factorizations are (2)*(2)*(2)*(2), (2)*(2)*(2*2), (2)*(2*2*2), (2*2)*(2*2), (2*2*2*2), (4)*(4), (4*4), (16).
		

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[GCD@@FactorInteger[n][[All,2]],PartitionsP],{n,100}]
  • PARI
    A052409(n) = { my(k=ispower(n)); if(k, k, n>1); }; \\ From A052409
    A295924(n) = if(1==n,n,sumdiv(A052409(n),d,numbpart(d))); \\ Antti Karttunen, Jul 29 2018

Formula

a(1) = 1; for n > 1, a(n) = Sum_{d|A052409(n)} A000041(d). - Antti Karttunen, Jul 29 2018

Extensions

More terms from Antti Karttunen, Jul 29 2018

A294337 Number of ways to write 2^n as a finite power-tower a^(b^(c^...)) of positive integers greater than one.

Original entry on oeis.org

1, 2, 2, 4, 2, 4, 2, 6, 4, 4, 2, 7, 2, 4, 4, 10, 2, 7, 2, 7, 4, 4, 2, 10, 4, 4, 6, 7, 2, 8, 2, 12, 4, 4, 4, 12, 2, 4, 4, 10, 2, 8, 2, 7, 7, 4, 2, 15, 4, 7, 4, 7, 2, 10, 4, 10, 4, 4, 2, 13, 2, 4, 7, 16, 4, 8, 2, 7, 4, 8, 2, 16, 2, 4, 7, 7, 4, 8, 2, 15, 10, 4, 2, 13, 4, 4, 4, 10, 2, 13, 4, 7, 4, 4, 4, 18, 2, 7, 7, 12, 2, 8, 2, 10, 8
Offset: 1

Views

Author

Gus Wiseman, Oct 28 2017

Keywords

Examples

			The a(12) = 7 ways are: 2^12, 4^6, 8^4, 8^(2^2), 16^3, 64^2, 4096.
		

Crossrefs

Programs

Formula

a(n) = Sum_{d|n} A294336(d) = A294336(A000079(n)). - Antti Karttunen, Jun 12 2018

Extensions

More terms from Antti Karttunen, Jun 12 2018

A295931 Number of ways to write n in the form n = (x^y)^z where x, y, and z are positive integers.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 1, 3, 3, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Nov 29 2017

Keywords

Comments

By convention a(1) = 1.
Values can be 1, 3, 6, 9, 10, 15, 18, 21, 27, 28, 30, 36, 45, 54, 60, 63, 84, 90, etc. - Robert G. Wilson v, Dec 10 2017

Examples

			The a(256) = 10 ways are:
(2^1)^8    (2^2)^4   (2^4)^2  (2^8)^1
(4^1)^4    (4^2)^2   (4^4)^1
(16^1)^2   (16^2)^1
(256^1)^1
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local m,d,t;
      m:= igcd(seq(t[2],t=ifactors(n)[2]));
      add(numtheory:-tau(d),d=numtheory:-divisors(m))
    end proc:
    f(1):= 1:
    map(f, [$1..100]); # Robert Israel, Dec 19 2017
  • Mathematica
    Table[Sum[DivisorSigma[0,d],{d,Divisors[GCD@@FactorInteger[n][[All,2]]]}],{n,100}]

Formula

a(A175082(k)) = 1, a(A093771(k)) = 3.
a(n) = Sum_{d|A052409(n)} A000005(d).

A363741 Number of factorizations of n satisfying (mean) = (median) = (mode), assuming there is a unique mode.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Jun 26 2023

Keywords

Comments

A mode in a multiset is an element that appears at least as many times as each of the others. For example, the modes in {a,a,b,b,b,c,d,d,d} are {b,d}.
The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).
Position of first appearance of n is: (1, 2, 4, 16, 64, 5832, 4096, ...).

Examples

			The factorization 6*9*9*12 = 5832 has mean 9, median 9, and modes {9}, so it is counted under a(5832).
The a(n) factorizations for selected n:
2   4     16        64            5832              4096
    2*2   4*4       8*8           18*18*18          64*64
          2*2*2*2   4*4*4         6*9*9*12          8*8*8*8
                    2*2*2*2*2*2   3*6*6*6*9         16*16*16
                                  2*3*3*3*3*3*3*4   4*4*4*4*4*4
                                                    2*2*2*2*2*2*2*2*2*2*2*2
		

Crossrefs

For just (mean) = (median): A359909, see A240219, A359889, A359910, A359911.
The version for partitions is A363719, unequal A363720.
For unequal instead of equal we have A363742.
A000041 counts integer partitions.
A001055 counts factorizations, strict A045778, ordered A074206.
A089723 counts constant factorizations.
A316439 counts factorizations by length, A008284 partitions.
A326622 counts factorizations with integer mean, strict A328966.
A339846 counts even-length factorizations, A339890 odd-length.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&, Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    modes[ms_]:=Select[Union[ms],Count[ms,#]>=Max@@Length/@Split[ms]&];
    Table[Length[Select[facs[n],{Mean[#]}=={Median[#]}==modes[#]&]],{n,100}]

A278029 a(1) = 0; for n > 1, a(n) = k if n is a non-perfect-power, A007916(k); or 0 if n is a perfect power.

Original entry on oeis.org

0, 1, 2, 0, 3, 4, 5, 0, 0, 6, 7, 8, 9, 10, 11, 0, 12, 13, 14, 15, 16, 17, 18, 19, 0, 20, 0, 21, 22, 23, 24, 0, 25, 26, 27, 0, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 0, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 0, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 0
Offset: 1

Views

Author

N. J. A. Sloane, Nov 10 2016

Keywords

Crossrefs

Programs

  • Mathematica
    FoldList[Boole[#2 != #1] #2 &, #] &@ Accumulate@ Array[Boole[And[# > 1, CoprimeQ @@ FactorInteger[#][[All, -1]]]] &, 81] (* Michael De Vlieger, Dec 18 2016 *)

Extensions

Name corrected by Peter Munn, Feb 28 2024

A296121 Number of twice-factorizations of n with no repeated factorizations.

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 1, 5, 2, 3, 1, 8, 1, 3, 3, 10, 1, 8, 1, 8, 3, 3, 1, 20, 2, 3, 5, 8, 1, 12, 1, 20, 3, 3, 3, 25, 1, 3, 3, 20, 1, 12, 1, 8, 8, 3, 1, 47, 2, 8, 3, 8, 1, 20, 3, 20, 3, 3, 1, 38, 1, 3, 8, 40, 3, 12, 1, 8, 3, 12, 1, 68, 1, 3, 8, 8, 3, 12, 1, 47, 10
Offset: 1

Views

Author

Gus Wiseman, Dec 05 2017

Keywords

Comments

From Robert G. Wilson v, Dec 05 2017: (Start)
a(n) = 1 iff n equals 1 or is a prime;
a(n) = 2 iff n is a prime squared;
a(n) = 3 iff n is a squarefree semiprime;
a(n) = 5 iff n is a prime cube;
a(n) = 8 iff n is of the form p^2*q, etc.
(End)

Examples

			The a(12) = 8 twice-factorizations:
(2)*(2*3), (3)*(2*2), (2*2*3),
(2)*(6), (2*6),
(3)*(4), (3*4),
(12).
		

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Join@@Table[Select[Tuples[facs/@p],UnsameQ@@#&],{p,facs[n]}]],{n,100}]

A294338 Number of ways to write n as a finite power-tower of positive integers greater than one, allowing both left and right nesting of parentheses.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Oct 28 2017

Keywords

Examples

			The a(16) = 5 ways are: 16, 4^2, (2^2)^2, 2^4, 2^(2^2).
		

Crossrefs

Programs

  • Maple
    A294338 := proc(n)
        local expo,g,a,d ;
        if n =1 then
            return 1;
        end if;
        # compute gcd of the set of prime power exponents (A052409)
        ifactors(n)[2] ;
        [ seq(op(2,ep),ep=%)] ;
        igcd(op(%)) ;
        # set of divisors of A052409 (without the 1)
        g := numtheory[divisors](%) minus {1} ;
        a := 0 ;
        for d in g do
            # recursive (sort of convolution) call
            a := a+ procname(d)*procname(root[d](n)) ;
        end do:
        1+a ;
    end proc:
    seq(A294338(n),n=1..120) ; # R. J. Mathar, Nov 27 2017
  • Mathematica
    a[n_]:=1+Sum[a[n^(1/g)]*a[g],{g,Rest[Divisors[GCD@@FactorInteger[n][[All,2]]]]}];
    Array[a,100]

A296132 Number of twice-factorizations of n where the first factorization is constant and the latter factorizations are strict, i.e., type (P,R,Q).

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 3, 1, 2, 2, 4, 1, 3, 1, 3, 2, 2, 1, 5, 2, 2, 3, 3, 1, 5, 1, 4, 2, 2, 2, 9, 1, 2, 2, 5, 1, 5, 1, 3, 3, 2, 1, 7, 2, 3, 2, 3, 1, 5, 2, 5, 2, 2, 1, 9, 1, 2, 3, 10, 2, 5, 1, 3, 2, 5, 1, 9, 1, 2, 3, 3, 2, 5, 1, 7, 4, 2, 1, 9, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Dec 05 2017

Keywords

Comments

a(n) is also the number of ways to choose a perfect divisor d|n and then a sequence of log_d(n) strict factorizations of d.

Examples

			The a(36) = 9 twice-factorizations are (2*3)*(2*3), (2*3)*(6), (6)*(2*3), (6)*(6), (2*3*6), (2*18), (3*12), (4*9), (36).
		

Crossrefs

Programs

  • Mathematica
    sfs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[sfs[n/d],Min@@#>d&]],{d,Rest[Divisors[n]]}]];
    Table[Sum[Length[sfs[n^(1/g)]]^g,{g,Divisors[GCD@@FactorInteger[n][[All,2]]]}],{n,100}]
Previous Showing 11-20 of 46 results. Next