cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 31 results. Next

A138814 Divisors of 4064 (half the 4th perfect number).

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 127, 254, 508, 1016, 2032, 4064
Offset: 1

Views

Author

Omar E. Pol, Mar 31 2008

Keywords

Comments

The n-th perfect number divided by 2 (A133028(n)) has 2*A090748(n) divisors, then this sequence has 12 members. First 6 members are the first 6 powers of 2 A000079. Last 6 members are multiples of 4th Mersenne prime A000668(4)=127. a(n) written in base 2 has n digit. See A138824 for the structure of this sequence.

Crossrefs

Perfect number divided by 2: A133028.

Programs

A138815 Divisors of 16775168 (half the 5th perfect number).

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 8191, 16382, 32764, 65528, 131056, 262112, 524224, 1048448, 2096896, 4193792, 8387584, 16775168
Offset: 1

Views

Author

Omar E. Pol, Mar 31 2008

Keywords

Comments

The n-th perfect number divided by 2 (A133028(n)) has 2*A090748(n) divisors, then this sequence has 24 members. First 12 members are the first 12 powers of 2 A000079. Last 12 members are multiples of 5th Mersenne prime A000668(5)=8191. a(n) written in base 2 has n digits. See A138825 for the structure of this sequence.

Crossrefs

Perfect number divided by 2: A133028. Cf. A000043, A000079, A000396, A000668, A090748, A134708, A135655, A138825.

Programs

A138824 Divisors of 4064 (the 4th perfect number divided by 2), written in base 2.

Original entry on oeis.org

1, 10, 100, 1000, 10000, 100000, 1111111, 11111110, 111111100, 1111111000, 11111110000, 111111100000
Offset: 1

Views

Author

Omar E. Pol, Mar 31 2008

Keywords

Comments

a(n) has n digits. See A138814 for more information.

Examples

			The structure of divisors of 4064 (see A138814)
.................................................................
n ........... Divisor . Formula ....... Divisor written in base 2
.................................................................
1) ................ 1 = 2^0 ........... 1
2) ................ 2 = 2^1 ........... 10
3) ................ 4 = 2^2 ........... 100
4) ................ 8 = 2^3 ........... 1000
5) ............... 16 = 2^4 ........... 10000
6) A134708(4) = .. 32 = 2^5 ........... 100000
7) A000668(4) = . 127 = 2^7 - 2^0 ..... 1111111
8) .............. 254 = 2^8 - 2^1 ..... 11111110
9) .............. 508 = 2^9 - 2^2 ..... 111111100
10) ............ 1016 = 2^10- 2^3 ..... 1111111000
11) ............ 2032 = 2^11- 2^4 ..... 11111110000
12) A133028(4) = 4064 = 2^12- 2^5 ..... 111111100000
		

Crossrefs

Perfect number divided by 2: A133028. Cf. A000043, A000396, A000668, A090748, A134708, A135654, A138814.

Programs

  • Mathematica
    FromDigits/@(IntegerDigits[#,2]&/@Divisors[4064]) (* Harvey P. Dale, Oct 12 2016 *)

A138825 Divisors of 16775168 (the 5th perfect number divided by 2), written in base 2.

Original entry on oeis.org

1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000, 1000000000, 10000000000, 100000000000, 1111111111111, 11111111111110, 111111111111100, 1111111111111000, 11111111111110000, 111111111111100000
Offset: 1

Views

Author

Omar E. Pol, Mar 31 2008

Keywords

Comments

a(n) has n digits. See A138815 for more information.

Examples

			The structure of divisors of 16775168 (see A138815)
.....................................................................
n ............... Divisor . Formula ....... Divisor written in base 2
.....................................................................
1) .................... 1 = 2^0 ........... 1
2) .................... 2 = 2^1 ........... 10
3) .................... 4 = 2^2 ........... 100
4) .................... 8 = 2^3 ........... 1000
5) ................... 16 = 2^4 ........... 10000
6) ................... 32 = 2^5 ........... 100000
7) ................... 64 = 2^6 ........... 1000000
8) .................. 128 = 2^7 ........... 10000000
9) .................. 256 = 2^8 ........... 100000000
10) ................. 512 = 2^9 ........... 1000000000
11) ................ 1024 = 2^10 .......... 10000000000
12) A134708(5) = ... 2048 = 2^11 .......... 100000000000
13) A000668(5) = ... 8191 = 2^13 - 2^0 .... 1111111111111
14) ............... 16382 = 2^14 - 2^1 .... 11111111111110
15) ............... 32764 = 2^15 - 2^2 .... 111111111111100
16) ............... 65528 = 2^16 - 2^3 .... 1111111111111000
17) .............. 131056 = 2^17 - 2^4 .... 11111111111110000
18) .............. 262112 = 2^18 - 2^5 .... 111111111111100000
19) .............. 524224 = 2^19 - 2^6 .... 1111111111111000000
20) ............. 1048448 = 2^20 - 2^7 .... 11111111111110000000
21) ............. 2096896 = 2^21 - 2^8 .... 111111111111100000000
22) ............. 4193792 = 2^22 - 2^9 .... 1111111111111000000000
23) ............. 8387584 = 2^23 - 2^10 ... 11111111111110000000000
24) A133028(5) = 16775168 = 2^24 - 2^11 ... 111111111111100000000000
		

Crossrefs

Perfect number divided by 2: A133028. Cf. A000043, A000396, A000668, A090748, A134708, A135654, A138815.

Programs

  • Mathematica
    FromDigits[IntegerDigits[#,2]]&/@Divisors[16775168] (* Harvey P. Dale, May 26 2015 *)

A139248 Triangle read by rows: row n lists the proper divisors of n-th even superperfect number A061652(n).

Original entry on oeis.org

1, 1, 2, 1, 2, 4, 8, 1, 2, 4, 8, 16, 32, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 1, 2, 4, 8, 16
Offset: 1

Views

Author

Omar E. Pol, Apr 22 2008

Keywords

Comments

Also, row n list the proper divisors of n-th superperfect number A019279(n), if there are no odd superperfect numbers.
Row n has A000043(n) - 1 = A090748(n) terms.

Examples

			Triangle begins:
  1
  1, 2
  1, 2, 4, 8
  1, 2, 4, 8, 16, 32
  1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048
  1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768
  ...
		

Crossrefs

A319535 Primes of the form 2*6^k - 1.

Original entry on oeis.org

11, 71, 431, 2591, 15551, 4353564671, 5642219814911, 341163456359156416511, 2046980738154938499071, 20628849596981071092343898111, 26734989077687468135677691953151, 207891275068097752223029732627709951, 269427092488254686881046533485512097791
Offset: 1

Views

Author

Jianing Song, Sep 22 2018

Keywords

Comments

Primes in A164559.
Companion sequence of A057472. There are 49 terms known in this sequence.

Examples

			2*6^1 - 1 = 11, 2*6^2 - 1 = 71, 2*6^3 - 1 = 431, 2*6^4 - 1 = 2591 and 2*6^5 - 1 = 15551 are primes, but 2*6^6 - 1 = 93311 = 23*4057 is not.
		

Crossrefs

Integers k such that 2*b^k - 1 is prime: A090748 (b=2), A003307 (b=3), A120375 (b=5), A057472 (b=6), A002959 (b=7), A002957 (b=10), A120378 (b=11).
Primes of the form 2*b^k - 1: A000668 (b=2), A079363 (b=3), A120376 (b=5), this sequence (b=6), A158795 (b=7), A055558 (b=10), A120377 (b=11).

Programs

  • Magma
    [k: n in [1..100] | IsPrime(k) where k is 2*6^n-1];  // K. D. Bajpai, Nov 15 2019
  • Maple
    A319535:= n-> (2*6^n-1): select(isprime, [seq((A319535(n), n=1..200))]);  # K. D. Bajpai, Nov 15 2019
  • Mathematica
    Select[Table[2*6^k-1,{k,1600}], PrimeQ[#]&]  (* K. D. Bajpai, Nov 15 2019 *)
  • PARI
    for(n=1, 99, my(t); if(ispseudoprime(t=2*6^n-1), print1(t", ")))
    

Formula

a(n) = 2*6^A057472(n) - 1.

A135612 Even superperfect numbers divided by 2, written in base 2.

Original entry on oeis.org

1, 10, 1000, 100000, 100000000000, 1000000000000000, 100000000000000000, 100000000000000000000000000000, 100000000000000000000000000000000000000000000000000000000000
Offset: 1

Views

Author

Omar E. Pol, Mar 01 2008

Keywords

Comments

Also, concatenation of "1" and A000043(n)-2 digits "0".
The number of divisors of a(n) is equal to the number of its digits. This number is equal to A090748(n)=A000043(n)-1.

Examples

			a(3)=1000 because A134708(n)=8 and 8 written in base 2 is 1000.
		

Crossrefs

Even superperfect numbers divided by 2: A134708. Cf. A000043, A019279, A090748, A135651, A135656.

Formula

a(n)=A134708(n) written in base 2.

A138823 Divisors of 248 (the 3rd perfect number divided by 2), written in base 2.

Original entry on oeis.org

1, 10, 100, 1000, 11111, 111110, 1111100, 11111000
Offset: 1

Views

Author

Omar E. Pol, Mar 31 2008, corrected Apr 03 2008

Keywords

Comments

248 is the number of dimensions of E_8.
a(n) has n digits.

Examples

			The structure of divisors of 248 (see A018355)
..................................................................
n ............ Divisor . Formula ....... Divisor written in base 2
..................................................................
1) ................. 1 = 2^0 ........... 1
2) ................. 2 = 2^1 ........... 10
3) ................. 4 = 2^2 ........... 100
4) A134708(3) = .... 8 = 2^3 ........... 1000
5) A000668(3) = ... 31 = 2^5 - 2^0 ..... 11111
6) ................ 62 = 2^6 - 2^1 ..... 111110
7) ............... 124 = 2^7 - 2^2 ..... 1111100
8) A133028(3) = .. 248 = 2^8 - 2^3 ..... 11111000
		

Crossrefs

Perfect number divided by 2: A133028. Cf. A000043, A000396, A000668, A018355, A090748, A134708, A135653.

Programs

A281622 Numbers k such that sigma(k-1) is a Mersenne prime (A000668).

Original entry on oeis.org

3, 5, 17, 26, 65, 4097, 65537, 262145, 1073741825
Offset: 1

Views

Author

Jaroslav Krizek, Jan 25 2017

Keywords

Comments

Conjecture 1: the next terms are: 1152921504606846977, 309485009821345068724781057, 81129638414606681695789005144065, 85070591730234615865843651857942052865.
Conjecture 2: Union of 26 and A256438.
Conjecture 3: Mersenne prime 31 is the only prime p such that p = sigma(x-1) = sigma(y-1) for distinct numbers x and y; 31 = sigma(17-1) = sigma(26-1).

Examples

			65 is a term because sigma(64) = 127 (Mersenne prime).
		

Crossrefs

Union of 26 and odd terms of A270413.
Prime terms are in A249759.
Subsequence of A270413.

Programs

  • Magma
    [n: n in[2..1000000], k in [1..20] | SumOfDivisors(n-1) eq 2^k-1 and IsPrime(2^k-1)];
    
  • PARI
    isok(n) = my(s = sigma(n-1)); isprime(s) && ispower(s+1,,&p) && (p==2); \\ Michel Marcus, Jan 27 2017

Formula

Conjecture: a(n) = 2^A090748(n) + 1. - Daniel Suteu, Feb 08 2017

A358546 Least odd number m such that m mod 3 > 0 and m*3^n is an amicable number, and -1 if no such number exists.

Original entry on oeis.org

5480828320492525, 4865, 7735, 455, 131285, 849355, 11689795, 286385, 187047685, 104255, 32851039955, 2085985, 47942199242945, 189296520259, 349700961302721360788238344333849, 580068028631, 50392682631679406080371010751466781
Offset: 0

Views

Author

Jean-Marc Rebert, Nov 21 2022

Keywords

Comments

If a(n) > -1 then a(n)*3^n is the least amicable number k such that A007949(k) = n.

Examples

			a(1) = 4865, because 4865 is an odd number and 4865 % 3 > 0 and 4865 * 3 = 14595 is an amicable number, and no lesser number has this property.
		

Crossrefs

Programs

  • PARI
    sigmap(k)=if(k,sigma(k)-k,0)
    cycle(k, TT=2)=my(x=k, T=1); while(x>0&&T<=TT, x=sigmap(x); if(x==k, return(T)); T++)
    a(n, TT=2)=my(p3n=3^n); forstep(m=1, +oo, 2, if(m%3&&cycle(p3n*m, TT)==2, return(m)))
Previous Showing 21-30 of 31 results. Next