cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A218017 Triangle, read by rows, where T(n,k) = k!*C(n, k)*7^(n-k) for n>=0, k=0..n.

Original entry on oeis.org

1, 7, 1, 49, 14, 2, 343, 147, 42, 6, 2401, 1372, 588, 168, 24, 16807, 12005, 6860, 2940, 840, 120, 117649, 100842, 72030, 41160, 17640, 5040, 720, 823543, 823543, 705894, 504210, 288120, 123480, 35280, 5040, 5764801, 6588344, 6588344, 5647152, 4033680, 2304960, 987840, 282240, 40320
Offset: 0

Views

Author

Vincenzo Librandi, Nov 10 2012

Keywords

Comments

Triangle formed by the derivatives of x^n evaluated at x=7. Also:
first column: A000420;
second column: A027473;
third column: 2*A027474;
fourth column: 6*A140107.

Examples

			Triangle begins:
1;
7,       1;
49,      14,      2;
343,     147,     42,      6;
2401,    1372,    588,     168,     24;
16807,   12005,   6860,    2940,    840,     120;
117649,  100842,  72030,   41160,   17640,   5040,    720;
823543,  823543,  705894,  504210,  288120,  123480,  35280,  5040; etc.
		

Crossrefs

Programs

  • Magma
    [Factorial(n)/Factorial(n-k)*7^(n-k): k in [0..n], n in [0..10]];
  • Mathematica
    Flatten[Table[n!/(n-k)!*7^(n-k), {n, 0, 10}, {k, 0, n}]]

Formula

T(n,k) = 7^(n-k)*n!/(n-k)! for n>=0, k=0..n.
E.g.f. (by columns): exp(7x)*x^k.

A052771 E.g.f.: x^3*exp(x)^2.

Original entry on oeis.org

0, 0, 0, 6, 48, 240, 960, 3360, 10752, 32256, 92160, 253440, 675840, 1757184, 4472832, 11182080, 27525120, 66846720, 160432128, 381026304, 896532480, 2091909120, 4844421120, 11142168576, 25467813888, 57881395200, 130862284800, 294440140800, 659545915392
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

The old definition of this sequence was "A simple grammar".

Crossrefs

Cf. A090802.

Programs

  • Magma
    [n*(n-1)*(n-2)/8*2^n: n in [0..30]]; // Vincenzo Librandi, Dec 06 2012
  • Maple
    spec := [S,{B=Set(Z),S=Prod(Z,Z,Z,B,B)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    Range[0, 30]! CoefficientList[Series[Exp[x]^2 x^3, {x, 0, 30}], x] (* Vincenzo Librandi, Dec 06 2012 *)

Formula

a(n) = A090802(n, 3).
Recurrence: {a(1)=0, a(2)=0, a(3)=6, (-2*n-2)*a(n)+(-2+n)*a(n+1)}.
a(n) = n*(n-1)*(n-2)/8 * 2^n. - Vaclav Kotesovec, Nov 27 2012
a(n) = 8*a(n-1) - 24*a(n-2) + 32*a(n-3) - 16*a(n-4). - Chai Wah Wu, May 25 2016
From Amiram Eldar, Jan 09 2022: (Start)
Sum_{n>=3} 1/a(n) = log(2) - 1/2.
Sum_{n>=3} (-1)^(n+1)/a(n) = 9*log(3/2) - 7/2. (End)

Extensions

New definition by Bruno Berselli, Dec 06 2012
More terms from Vincenzo Librandi, Dec 06 2012

A052796 Expansion of e.g.f. x^4*exp(x)^2.

Original entry on oeis.org

0, 0, 0, 0, 24, 240, 1440, 6720, 26880, 96768, 322560, 1013760, 3041280, 8785920, 24600576, 67092480, 178913280, 467927040, 1203240960, 3048210432, 7620526080, 18827182080, 46022000640, 111421685760, 267412045824, 636695347200, 1504916275200
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

a(n) is the number of ways that n people can form two distinct committees and then choose a president and vice president for each committee.

Crossrefs

Cf. A090802.

Programs

  • Magma
    [(n-3)*(n-2)*(n-1)*n * 2^(n-4): n in [0..30]]; // Vincenzo Librandi, Dec 06 2012
  • Maple
    spec := [S,{B=Set(Z),S=Prod(Z,Z,Z,Z,B,B)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    Range[0, 30]!* CoefficientList[Series[Exp[x]^2 * x^4,{x, 0, 30}], x] (* Vincenzo Librandi, Dec 06 2012 *)

Formula

E.g.f.: x^4*exp(x)^2.
a(n) = A090802(n, 4).
Recurrence: {a(1)=0, a(2)=0, a(3)=0, a(4)=24, (-2*n-2)*a(n)+(n-3)*a(n+1)}.
O.g.f.: -24*x^4/(2*x-1)^5. - Maksym Voznyy (voznyy(AT)mail.ru), Aug 12 2009
a(n) = (n-3)*(n-2)*(n-1)*n * 2^(n-4). - Vaclav Kotesovec, Nov 27 2012
From Amiram Eldar, Jan 09 2022: (Start)
Sum_{n>=4} 1/a(n) = 5/18 - log(2)/3.
Sum_{n>=4} (-1)^n/a(n) = 9*log(3/2) - 65/18. (End)

Extensions

More terms from Vincenzo Librandi, Dec 06 2012

A082569 a(1)=2; a(n)=ceiling(n*(a(n-1)-1/a(n-1))).

Original entry on oeis.org

2, 3, 8, 32, 160, 960, 6720, 53760, 483840, 4838400, 53222400, 638668800, 8302694400, 116237721600, 1743565824000, 27897053184000, 474249904128000, 8536498274304000, 162193467211776000, 3243869344235520000
Offset: 1

Views

Author

Benoit Cloitre, May 06 2003

Keywords

Crossrefs

Equals 4 * A002301.

Programs

  • Mathematica
    nxt[{n_,a_}]:={n+1,Ceiling[(n+1)(a-1/a)]}; Transpose[NestList[nxt,{1,2},20]][[2]] (* Harvey P. Dale, May 30 2015 *)

Formula

a(1)=2 a(2)=3 and for n>2, a(n)= 4*n!/3.
a(n) = A090802(n, n-3) for n > 2. - Ross La Haye, Sep 26 2005

A189071 The n-th derivative of x^10 evaluated at x=2.

Original entry on oeis.org

1024, 5120, 23040, 92160, 322560, 967680, 2419200, 4838400, 7257600, 7257600, 3628800, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Vincenzo Librandi, Apr 21 2011

Keywords

Comments

This is the 10th row of A090802.

Programs

  • Magma
    [n lt 1 select 1024 else n lt 11 select (1/2)*(11-n)*Self(n) else 0: n in [0..67]];  // Bruno Berselli, Sep 08 2011
  • Mathematica
    LinearRecurrence[{1},{1024, 5120, 23040, 92160, 322560, 967680, 2419200, 4838400, 7257600, 7257600, 3628800, 0},68] (* Ray Chandler, Jul 15 2015 *)
  • PARI
    a(n)=if(n<11,10!/(10-n)!*2^(10-n)) \\ Charles R Greathouse IV, Sep 08 2011
    

Formula

a(n) = (1/2)*(11-n)*a(n-1), a(0)=1024. - Bruno Berselli, Sep 08 2011

A359110 Number of Boolean monoids of order 2^n up to isomorphism.

Original entry on oeis.org

1, 5, 83, 242547
Offset: 1

Views

Author

Choiwah Chow, Dec 18 2022

Keywords

Crossrefs

Previous Showing 11-16 of 16 results.