cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A090802 Triangle read by rows: a(n,k) = number of k-length walks in the Hasse diagram of a Boolean algebra of order n.

Original entry on oeis.org

1, 2, 1, 4, 4, 2, 8, 12, 12, 6, 16, 32, 48, 48, 24, 32, 80, 160, 240, 240, 120, 64, 192, 480, 960, 1440, 1440, 720, 128, 448, 1344, 3360, 6720, 10080, 10080, 5040, 256, 1024, 3584, 10752, 26880, 53760, 80640, 80640, 40320
Offset: 0

Views

Author

Ross La Haye, Feb 10 2004

Keywords

Comments

Row sums = A010842(n); Row sums from column 1 on = A066534(n) = n*A010842(n-1) = A010842(n) - 2^n.
a(n,k) = n! = k! = A000142(n) for n = k; a(n,n-1) = 2*n! = A052849(n) for n > 1; a(n,n-2) = 2*n! = A052849(n) for n > 2; a(n,n-3) = (4/3)*n! = A082569(n) for n > 3; a(n,n-1)/a(2,1) = n!/2! = A001710(n) for n > 1; a(n,n-2)/ a(3,1) = n!/3! = A001715(n) for n > 2; a(n,n-3)/a(4,1) = n!/4! = A001720(n) for n > 3.
a(2k, k) = A052714(k+1). a(2k-1, k) = A034910(k).
a(n,0) = A000079(n); a(n,1) = A001787(n) = row sums of A003506; a(n,2) = A001815(n) = 2!*A001788(n-1); a(n,3) = A052771(n) = 3!*A001789(n); a(n,4) = A052796(n) = 4!*A003472(n); ceiling[a(n,1) / 2] = A057711(n); a(n,5) = 5!*A054849(n).
In a class of n students, the number of committees (of any size) that contain an ordered k-sized subcommittee is a(n,k). - Ross La Haye, Apr 17 2006
Antidiagonal sums [1,2,5,12,30,76,198,528,1448,4080,...] appear to be binomial transform of A000522 interleaved with itself, i.e., 1,1,2,2,5,5,16,16,65,65,... - Ross La Haye, Sep 09 2006
Let P(A) be the power set of an n-element set A. Then a(n,k) = the number of ways to add k elements of A to each element x of P(A) where the k elements are not elements of x and order of addition is important. - Ross La Haye, Nov 19 2007
The derivatives of x^n evaluated at x=2. - T. D. Noe, Apr 21 2011

Examples

			{1};
{2, 1};
{4, 4, 2};
{8, 12, 12, 6};
{16, 32, 48, 48, 24};
{32, 80, 160, 240, 240, 120};
{64, 192, 480, 960, 1440, 1440, 720};
{128, 448, 1344, 3360, 6720, 10080, 10080, 5040};
{256, 1024, 3584, 10752, 26880, 53760, 80640, 80640, 40320}
a(5,3) = 240 because P(5,3) = 60, 2^(5-3) = 4 and 60 * 4 = 240.
		

Crossrefs

Programs

  • Mathematica
    Flatten[Table[n!/(n-k)! * 2^(n-k), {n, 0, 8}, {k, 0, n}]] (* Ross La Haye, Feb 10 2004 *)

Formula

a(n, k) = 0 for n < k. a(n, k) = k!*C(n, k)*2^(n-k) = P(n, k)*2^(n-k) = (2n)!!/((n-k)!*2^k) = k!*A038207(n, k) = A068424*2^(n-k) = Sum[C(n, m)*P(n-m, k), {m, 0, n-k}] = Sum[C(n, n-m)*P(n-m, k), {m, 0, n-k}] = n!*Sum[1/(m!*(n-m-k)!), {m, 0, n-k}] = k!*Sum[C(n, m)*C(n-m, k), {m, 0, n-k}] = k!*Sum[C(n, n-m)*C(n-m, k), {m, 0, n-k}] = k!*C(n, k)*Sum[C(n-k, n-m-k), {m, 0, n-k}] = k!*C(n, k)*Sum[C(n-k, m), {m, 0, n-k}] for n >= k.
a(n, k) = 0 for n < k. a(n, k) = n*a(n-1, k-1) for n >= k >= 1.
E.g.f. (by columns): exp(2x)*x^k.

Extensions

More terms from Ray Chandler, Feb 26 2004
Entry revised by Ross La Haye, Aug 18 2006

A155863 Triangle T(n,k) = n*(n^2 - 1)*binomial(n-2, k-1) for 1 <= k <= n-1, n >= 2, and T(n,0) = T(n,n) = 1 for n >= 0, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 6, 1, 1, 24, 24, 1, 1, 60, 120, 60, 1, 1, 120, 360, 360, 120, 1, 1, 210, 840, 1260, 840, 210, 1, 1, 336, 1680, 3360, 3360, 1680, 336, 1, 1, 504, 3024, 7560, 10080, 7560, 3024, 504, 1, 1, 720, 5040, 15120, 25200, 25200, 15120, 5040, 720, 1, 1, 990, 7920, 27720, 55440, 69300, 55440, 27720, 7920, 990, 1
Offset: 0

Views

Author

Roger L. Bagula, Jan 29 2009

Keywords

Examples

			Triangle begins:
  1;
  1,   1;
  1,   6,    1;
  1,  24,   24,     1;
  1,  60,  120,    60,     1;
  1, 120,  360,   360,   120,     1;
  1, 210,  840,  1260,   840,   210,     1;
  1, 336, 1680,  3360,  3360,  1680,   336,     1;
  1, 504, 3024,  7560, 10080,  7560,  3024,   504,    1,
  1, 720, 5040, 15120, 25200, 25200, 15120,  5040,  720,   1;
  1, 990, 7920, 27720, 55440, 69300, 55440, 27720, 7920, 990, 1;
  ...
		

Crossrefs

Programs

  • Magma
    A155863:= func< n,k | k eq 0 or k eq n select 1 else 6*Binomial(n+1, 3)*Binomial(n-2, k-1) >;
    [A155863(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 04 2021
    
  • Mathematica
    (* First program *)
    p[n_, x_]:= p[n, x]= If[n==0, 1, 1 + x^n + x*D[(x+1)^(n+1), {x, 3}]];
    Flatten[Table[CoefficientList[p[n,x], x], {n,0,12}]]
    (* Second program *)
    T[n_, k_]:= If[k==0 || k==n, 1, 6*Binomial[n+1, 3]*Binomial[n-2, k-1]];
    Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 04 2021 *)
  • Maxima
    T(n, k):= ratcoef(expand(x^n + n*(n^2 -1)*x*(x+1)^(n-2) + (1 + (-1)^(2^n))/2), x, k)$
    create_list(T(n, k), n, 0, 12, k, 0, n); /* Franck Maminirina Ramaharo, Dec 03 2018 */
    
  • Sage
    def A155863(n,k): return 1 if (k==0 or k==n) else 6*binomial(n+1, 3)*binomial(n-2, k-1)
    flatten([[A155863(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 04 2021

Formula

T(n, k) = coefficients of p(n, x), where p(n, x) = 1 + x^n + x*((d/dx)^3 (x+1)^(n+1)) and T(0, 0) = 1.
From Franck Maminirina Ramaharo, Dec 03 2018: (Start)
T(n, k) = (n-1)*n*(n+1)*binomial(n-2, k-1) with T(n, 0) = T(n, n) = 1.
n-th row polynomial is x^n + n*(n^2 - 1)*x*(x+1)^(n-2) + (1 + (-1)^(2^n))/2.
G.f.: 1/(1 - y) + 1/(1 - x*y) + (6*x*y^2)/(1 - y - x*y)^4 - 1.
E.g.f.: exp(y) + exp(x*y) + (3*x*y^2 + (x + x^2)*y^3)*exp((1 + x)*y) - 1. (End)
Sum_{k=0..n} T(n, k) = 2 - [n=0] + 6*A001789(n+1) = 2 - [n=0] + A052771(n+1). - G. C. Greubel, Jun 04 2021

Extensions

Edited and name clarified by Franck Maminirina Ramaharo, Dec 03 2018
Showing 1-2 of 2 results.