cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 43 results. Next

A218753 a(n) = (49^n - 1)/48.

Original entry on oeis.org

0, 1, 50, 2451, 120100, 5884901, 288360150, 14129647351, 692352720200, 33925283289801, 1662338881200250, 81454605178812251, 3991275653761800300, 195572507034328214701, 9583052844682082520350, 469569589389422043497151, 23008909880081680131360400
Offset: 0

Views

Author

M. F. Hasler, Nov 04 2012

Keywords

Comments

Partial sums of powers of 49 (A087752).

Crossrefs

Programs

Formula

G.f.: x/((1-x)*(1-49*x)). - Vincenzo Librandi, Nov 08 2012
a(n) = 50*a(n-1) - 49*a(n-2) with a(0)=0, a(1)=1. - Vincenzo Librandi, Nov 08 2012
a(n) = 49*a(n-1) + 1 with a(0)=0. - Vincenzo Librandi, Nov 08 2012
a(n) = floor(49^n/48). - Vincenzo Librandi, Nov 08 2012
E.g.f.: exp(25*x)*sinh(24*x)/24. - Elmo R. Oliveira, Aug 27 2024

A218736 a(n) = (33^n - 1)/32.

Original entry on oeis.org

0, 1, 34, 1123, 37060, 1222981, 40358374, 1331826343, 43950269320, 1450358887561, 47861843289514, 1579440828553963, 52121547342280780, 1720011062295265741, 56760365055743769454, 1873092046839544391983, 61812037545704964935440, 2039797239008263842869521
Offset: 0

Views

Author

M. F. Hasler, Nov 04 2012

Keywords

Comments

Partial sums of powers of 33 (A009977).

Crossrefs

Programs

Formula

From Vincenzo Librandi, Nov 07 2012: (Start)
G.f.: x/((1 - x)*(1 - 33*x)).
a(n) = 34*a(n-1) - 33*a(n-2).
a(n) = floor(33^n/32). (End)
E.g.f.: exp(x)*(exp(32*x) - 1)/32. - Stefano Spezia, Mar 24 2023

A125118 Triangle read by rows: T(n,k) = value of the n-th repunit in base (k+1) representation, 1<=k<=n.

Original entry on oeis.org

1, 3, 4, 7, 13, 21, 15, 40, 85, 156, 31, 121, 341, 781, 1555, 63, 364, 1365, 3906, 9331, 19608, 127, 1093, 5461, 19531, 55987, 137257, 299593, 255, 3280, 21845, 97656, 335923, 960800, 2396745, 5380840, 511, 9841, 87381, 488281, 2015539, 6725601, 19173961, 48427561, 111111111
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 21 2006

Keywords

Examples

			First 4 rows:
1: [1]_2
2: [11]_2 ........ [11]_3
3: [111]_2 ....... [111]_3 ....... [111]_4
4: [1111]_2 ...... [1111]_3 ...... [1111]_4 ...... [1111]_5
_
1: 1
2: 2+1 ........... 3+1
3: (2+1)*2+1 ..... (3+1)*3+1 ..... (4+1)*4+1
4: ((2+1)*2+1)*2+1 ((3+1)*3+1)*3+1 ((4+1)*4+1)*4+1 ((5+1)*5+1)*5+1.
		

Crossrefs

This triangle shares some features with triangle A104878.
This triangle is a portion of rectangle A055129.
Each term of A110737 comes from the corresponding row of this triangle.
Diagonals (adjusting offset as necessary): A060072, A023037, A031973, A173468.
Cf. A023037, A031973, A125119, A125120 (row sums).

Programs

  • Magma
    [((k+1)^n -1)/k : k in [1..n], n in [1..12]]; // G. C. Greubel, Aug 15 2022
    
  • Mathematica
    Table[((k+1)^n -1)/k, {n, 12}, {k, n}]//Flatten (* G. C. Greubel, Aug 15 2022 *)
  • SageMath
    def A125118(n,k): return ((k+1)^n -1)/k
    flatten([[A125118(n,k) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Aug 15 2022

Formula

T(n, k) = Sum_{i=0..n-1} (k+1)^i.
T(n+1, k) = (k+1)*T(n, k) + 1.
Sum_{k=1..n} T(n, k) = A125120(n).
T(2*n-1, n) = A125119(n).
T(n, 1) = A000225(n).
T(n, 2) = A003462(n) for n>1.
T(n, 3) = A002450(n) for n>2.
T(n, 4) = A003463(n) for n>3.
T(n, 5) = A003464(n) for n>4.
T(n, 9) = A002275(n) for n>8.
T(n, n) = A060072(n+1).
T(n, n-1) = A023037(n) for n>1.
T(n, n-2) = A031973(n) for n>2.
T(n, k) = A055129(n, k+1) = A104878(n+k, k+1), 1<=k<=n. - Mathew Englander, Dec 19 2020

A104878 A sum-of-powers number triangle.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 7, 4, 1, 1, 5, 15, 13, 5, 1, 1, 6, 31, 40, 21, 6, 1, 1, 7, 63, 121, 85, 31, 7, 1, 1, 8, 127, 364, 341, 156, 43, 8, 1, 1, 9, 255, 1093, 1365, 781, 259, 57, 9, 1, 1, 10, 511, 3280, 5461, 3906, 1555, 400, 73, 10, 1, 1, 11, 1023, 9841, 21845
Offset: 0

Views

Author

Paul Barry, Mar 28 2005

Keywords

Comments

Columns are partial sums of the columns of A004248. Row sums are A104879. Diagonal sums are A104880.
The rows of this triangle (apart from the initial "1" in each row) are the antidiagonals of rectangle A055129. The diagonals of this triangle (apart from the initial "1") are the rows of rectangle A055129. The columns of this triangle (apart from the leftmost column) are the same as the columns of rectangle A055129 but shifted downward. - Mathew Englander, Dec 21 2020

Examples

			Triangle starts:
  1;
  1,  1;
  1,  2,  1;
  1,  3,  3,  1;
  1,  4,  7,  4,  1;
  1,  5, 15, 13,  5,  1;
  1,  6, 31, 40, 21,  6,  1;
  ...
		

Crossrefs

Cf. A004248 (first differences by column), A104879 (row sums), A104880 (antidiagonal sums), A125118 (version of this triangle with fewer terms).
This triangle (ignoring the leftmost column) is a rotation of rectangle A055129.
T(2n,n) gives A031973.

Programs

  • Maple
    A104878 :=proc(n,k): if k = 0 then 1 elif k=1 then n elif k>=2 then (k^(n-k+1)-1)/(k-1) fi: end: for n from 0 to 7 do seq(A104878(n,k), k=0..n) od; seq(seq(A104878(n,k), k=0..n), n=0..10); # Johannes W. Meijer, Aug 21 2011

Formula

T(n, k) = if(k=1, n, if(k<=n, (k^(n-k+1)-1)/(k-1), 0));
G.f. of column k: x^k/((1-x)(1-k*x)). [corrected by Werner Schulte, Jun 05 2019]
T(n, k) = A069777(n+1,k)/A069777(n,k). [Johannes W. Meijer, Aug 21 2011]
T(n, k) = A055129(n+1-k, k) for n >= k > 0. - Mathew Englander, Dec 19 2020

A218750 a(n) = (47^n - 1)/46.

Original entry on oeis.org

0, 1, 48, 2257, 106080, 4985761, 234330768, 11013546097, 517636666560, 24328923328321, 1143459396431088, 53742591632261137, 2525901806716273440, 118717384915664851681, 5579717091036248029008, 262246703278703657363377, 12325595054099071896078720
Offset: 0

Views

Author

M. F. Hasler, Nov 04 2012

Keywords

Comments

Partial sums of powers of 47 (A009991).

Crossrefs

Programs

Formula

a(n) = floor(47^n/46).
G.f.: x/(47*x^2-48*x+1) = x/((1-x)*(1-47*x)). [Colin Barker, Nov 06 2012]
a(0)=0, a(n) = 47*a(n-1) + 1. - Vincenzo Librandi, Nov 08 2012
a(n) = 48*a(n-1) - 47*a(n-2). - Wesley Ivan Hurt, Jan 25 2022
E.g.f.: exp(24*x)*sinh(23*x)/23. - Elmo R. Oliveira, Aug 27 2024

A218726 a(n) = (23^n - 1)/22.

Original entry on oeis.org

0, 1, 24, 553, 12720, 292561, 6728904, 154764793, 3559590240, 81870575521, 1883023236984, 43309534450633, 996119292364560, 22910743724384881, 526947105660852264, 12119783430199602073, 278755018894590847680, 6411365434575589496641, 147461404995238558422744
Offset: 0

Views

Author

M. F. Hasler, Nov 04 2012

Keywords

Comments

Partial sums of powers of 23, q-integers for q=23: diagonal k=1 in triangle A022187.
Partial sums are in A014909. Also, the sequence is related to A014941 by A014941(n) = n*a(n) - Sum{a(i), i=0..n-1} for n > 0. - Bruno Berselli, Nov 07 2012

Crossrefs

Programs

Formula

From Vincenzo Librandi, Nov 07 2012: (Start)
G.f.: x/((1-x)*(1-23*x)).
a(n) = floor(23^n/22).
a(n) = 24*a(n-1) - 23*a(n-2). (End)
E.g.f.: exp(12*x)*sinh(11*x)/11. - Elmo R. Oliveira, Aug 27 2024

A218732 a(n) = (29^n - 1)/28.

Original entry on oeis.org

0, 1, 30, 871, 25260, 732541, 21243690, 616067011, 17865943320, 518112356281, 15025258332150, 435732491632351, 12636242257338180, 366451025462807221, 10627079738421409410, 308185312414220872891, 8937374060012405313840, 259183847740359754101361
Offset: 0

Views

Author

M. F. Hasler, Nov 04 2012

Keywords

Comments

Partial sums of powers of 29 (A009973).

Crossrefs

Programs

  • Magma
    [n le 2 select n-1 else 30*Self(n-1)-29*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 07 2012
    
  • Mathematica
    LinearRecurrence[{30, -29}, {0, 1}, 30] (* Vincenzo Librandi, Nov 07 2012 *)
  • Maxima
    A218732(n):=(29^n-1)/28$
    makelist(A218732(n),n,0,30); /* Martin Ettl, Nov 07 2012 */
  • PARI
    a(n)=29^n\28
    

Formula

a(n) = floor(29^n/28).
G.f.: x/((1-x)*(1-29*x)). - Vincenzo Librandi, Nov 07 2012
a(n) = 30*a(n-1) - 29*a(n-2). - Vincenzo Librandi, Nov 07 2012
E.g.f.: exp(15*x)*sinh(14*x)/14. - Elmo R. Oliveira, Aug 27 2024

A218733 a(n) = (30^n - 1)/29.

Original entry on oeis.org

0, 1, 31, 931, 27931, 837931, 25137931, 754137931, 22624137931, 678724137931, 20361724137931, 610851724137931, 18325551724137931, 549766551724137931, 16492996551724137931, 494789896551724137931, 14843696896551724137931, 445310906896551724137931, 13359327206896551724137931
Offset: 0

Views

Author

M. F. Hasler, Nov 04 2012

Keywords

Comments

Partial sums of powers of 30 (A009974).

Crossrefs

Programs

Formula

a(n) = floor(30^n/29).
From Vincenzo Librandi, Nov 07 2012: (Start)
G.f.: x/((1-x)*(1-30*x)).
a(n) = 31*a(n-1) - 30*a(n-2). (End)
E.g.f.: exp(x)*(exp(29*x) - 1)/29. - Elmo R. Oliveira, Aug 29 2024

A218740 a(n) = (37^n - 1)/36.

Original entry on oeis.org

0, 1, 38, 1407, 52060, 1926221, 71270178, 2636996587, 97568873720, 3610048327641, 133571788122718, 4942156160540567, 182859777940000980, 6765811783780036261, 250335035999861341658, 9262396331994869641347, 342708664283810176729840, 12680220578500976539004081
Offset: 0

Views

Author

M. F. Hasler, Nov 04 2012

Keywords

Comments

Partial sums of powers of 37 (A009981).

Crossrefs

Programs

Formula

From Vincenzo Librandi, Nov 07 2012: (Start)
G.f.: x/((1 - x)*(1 - 37*x)).
a(n) = 38*a(n-1) - 37*a(n-2).
a(n) = floor(37^n/36). (End)
E.g.f.: exp(x)*(exp(36*x) - 1)/36. - Stefano Spezia, Mar 28 2023

A218744 a(n) = (41^n - 1)/40.

Original entry on oeis.org

0, 1, 42, 1723, 70644, 2896405, 118752606, 4868856847, 199623130728, 8184548359849, 335566482753810, 13758225792906211, 564087257509154652, 23127577557875340733, 948230679872888970054, 38877457874788447772215, 1593975772866326358660816, 65353006687519380705093457
Offset: 0

Views

Author

M. F. Hasler, Nov 04 2012

Keywords

Comments

Partial sums of powers of 41 (A009985).

Crossrefs

Programs

Formula

a(n) = floor(41^n/40).
G.f.: x/((1-x)*(1-41*x)). - Vincenzo Librandi, Nov 07 2012
a(n) = 42*a(n-1) - 41*a(n-2). - Vincenzo Librandi, Nov 07 2012
E.g.f.: exp(21*x)*sinh(20*x)/20. - Elmo R. Oliveira, Aug 27 2024
Previous Showing 11-20 of 43 results. Next