A214458
Let S_3(n) denote difference between multiples of 3 in interval [0,n) with even and odd binary digit sums. Then a(n)=(-1)^A000120(n)*(S_3(n)-3*S_3(floor(n/4))).
Original entry on oeis.org
0, -1, -1, 1, 1, -1, -1, 0, 0, 0, 1, -1, 1, -2, -2, 2, 0, 0, 0, -1, 1, -1, 0, 0, 0, -1, -1, 1, 1, -1, -1, 0, 0, 0, 1, -1, 1, -2, -2, 2, 0, 0, 0, -1, 1, -1, 0, 0, 0, -1, -1, 1, 1, -1, -1, 0, 0, 0, 1, -1, 1, -2, -2, 2, 0, 0, 0, -1, 1, -1, 0, 0, 0, -1, -1, 1, 1
Offset: 0
A377657
Array read by ascending antidiagonals: A(n, k) = Sum_{j=0..k} tan(j*Pi/(1 + 2*k))^(2*n).
Original entry on oeis.org
1, 0, 2, 0, 3, 3, 0, 9, 10, 4, 0, 27, 90, 21, 5, 0, 81, 850, 371, 36, 6, 0, 243, 8050, 7077, 1044, 55, 7, 0, 729, 76250, 135779, 33300, 2365, 78, 8, 0, 2187, 722250, 2606261, 1070244, 113311, 4654, 105, 9, 0, 6561, 6841250, 50028755, 34420356, 5476405, 312390, 8295, 136, 10
Offset: 0
Array begins
[0] 1, 2, 3, 4, 5, 6, ... A000027
[1] 0, 3, 10, 21, 36, 55, ... A014105
[2] 0, 9, 90, 371, 1044, 2365, ... A377858
[3] 0, 27, 850, 7077, 33300, 113311, ... A376778
[4] 0, 81, 8050, 135779, 1070244, 5476405, ...
[5] 0, 243, 76250, 2606261, 34420356, 264893255, ...
[6] 0, 729, 722250, 50028755, 1107069876, 12813875437, ...
[7] 0, 2187, 6841250, 960335173, 35607151476, 619859803695, ...
.
Seen as a triangle T(n, k) = A(n-k, k):
[0] 1;
[1] 0, 2;
[2] 0, 3, 3;
[3] 0, 9, 10, 4;
[4] 0, 27, 90, 21, 5;
[5] 0, 81, 850, 371, 36, 6;
[6] 0, 243, 8050, 7077, 1044, 55, 7;
[7] 0, 729, 76250, 135779, 33300, 2365, 78, 8;
[8] 0, 2187, 722250, 2606261, 1070244, 113311, 4654, 105, 9;
-
A := (n, k) -> add(tan(j*Pi/(1 + 2*k))^(2*n), j = 0..k):
seq(print(seq(round(evalf(A(n, k), 32)), k = 0..6)), n = 0..7);
-
A(n, k) = {trace(matcompanion(sum(m=0, k, x^m*binomial(2*k+1, 2*(k-m))*(-1)^(m+1)))^n)+(n==0) } \\ Thomas Scheuerle, Nov 11 2024
A212822
Triangle of coefficients of polynomials concerning Newman-like phenomenon of multiples of b+1 in even base b in interval [0,b^n) (see comment).
Original entry on oeis.org
1, 2, -1, 1, 3, -1, 2, 6, -8, 3, 2, 10, 10, -10, 3, 4, 20, 10, -50, 46, -15, 17, 119, 245, 35, -217, 161, -45, 34, 238, 406, -350, -644, 1372, -1056, 315, 62, 558, 1722, 1638, -1092, -1008, 1828, -1188, 315, 124, 1116, 3138, 1134, -5838, 1134, 9452, -14724, 10134, -2835
Offset: 2
Triangle begins (r is the number of row or the number of polynomial; coefficients of b^k, k=r-2-i, i=0,1,..., r-2)
r/i.|..0......1......2.....3.....4......5......6.....7
======================================================
.2..|..1
.3..|..2.....-1
.4..|..1......3.....-1
.5..|..2......6.....-8.....3
.6..|..2.....10.....10...-10.....3
.7..|..4.....20.....10...-50....46....-15
.8..|.17....119....245....35..-217....161....-45
.9..|.34....238....406..-350..-644...1372..-1056....315
For example, if r=4, the polynomial
P_4(b)=b*(b^2+3*b-1)/A156769(4/2)=b/3*(b^2+3*b-1) (b==0 mod 2)
gives difference between multiples of b+1 with even and odd digit sums in base b in interval [0, b^4). Note also that P_2(b)=b. Therefore, setting in the formula n=r=3, again for P_4(b) we have P_4(b)=b*C(b+1,2)-C(b,3)=b/3*(b^2+3*b-1).
Cf.
A156769,
A038754,
A084990,
A091042,
A212500,
A212592,
A212593,
A212594,
A212668,
A212669,
A212670,
A212705,
A212706.
-
A156769[n_] := Denominator[(2^(2*n-2)/Factorial[2*n-1])]; poly[1, b_] := 1; poly[2, b_] := b; poly[n_, b_] := poly[n, b] = If[OddQ[n], (-1)^((n - 1)/2) (FunctionExpand[Binomial[b - 1, n - 1]] - Sum[(-1)^(k/2) FunctionExpand[Binomial[b + 1, n - k - 1]] poly[k + 1, b], {k, 0, n - 2, 2}]), (-1)^((n - 2)/2) (FunctionExpand[Binomial[b, n - 1]] - Sum[(-1)^((k - 1)/2) FunctionExpand[Binomial[b + 1, n - k - 1]] poly[k + 1, b], {k, 1, n - 2, 2}])]; Table[If[EvenQ[z], Most[Reverse[CoefficientList[poly[z, b] A156769[z/2], b]]], Reverse[CoefficientList[poly[z, b] A156769[(z - 1)/2], b]]], {z, 2, 12}]
A232535
Triangle T(n,k), 0 <= k <= n, read by rows defined by: T(n,k) = (binomial(2*n,2*k) + binomial(2*n+1,2*k))/2.
Original entry on oeis.org
1, 1, 2, 1, 8, 3, 1, 18, 25, 4, 1, 32, 98, 56, 5, 1, 50, 270, 336, 105, 6, 1, 72, 605, 1320, 891, 176, 7, 1, 98, 1183, 4004, 4719, 2002, 273, 8, 1, 128, 2100, 10192, 18590, 13728, 4004, 400, 9, 1, 162, 3468, 22848, 59670, 68068, 34476, 7344, 561, 10, 1, 200, 5415
Offset: 0
Triangle begins:
1
1, 2
1, 8, 3
1, 18, 25, 4
1, 32, 98, 56, 5
1, 50, 270, 336, 105, 6
1, 72, 605, 1320, 891, 176, 7
1, 98, 1183, 4004, 4719, 2002, 273, 8
1, 128, 2100, 10192, 18590, 13728, 4004, 400, 9
-
T := (n,k) -> binomial(2*n, 2*k)*(2*n+1-k)/(2*n+1-2*k);
seq(seq(T(n,k), k=0..n), n=0..9); # Peter Luschny, Nov 26 2013
-
Flatten[Table[(Binomial[2n,2k]+Binomial[2n+1,2k])/2,{n,0,10},{k,0,n}]] (* Harvey P. Dale, Jul 05 2015 *)
Comments