cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 21 results. Next

A181411 a(n) = Sum_{k=0..n} C(n,k)*sigma(n+k) for n>=1.

Original entry on oeis.org

4, 18, 55, 150, 379, 915, 2146, 4934, 11080, 24833, 54476, 119091, 259432, 556700, 1195135, 2561094, 5428597, 11488866, 24350993, 51296325, 107427025, 225330244, 472762497, 985966379, 2049357779, 4267962522, 8887535983, 18431783744
Offset: 1

Views

Author

Paul D. Hanna, Oct 19 2010

Keywords

Examples

			L.g.f.: L(x) = 4*x + 18*x^2/2 + 55*x^3/3 + 150*x^4/4 + 379*x^5/5 +...
Exponentiation yields the g.f. of A181410:
exp(L(x)) = 1 + 4*x + 17*x^2 + 65*x^3 + 234*x^4 + 804*x^5 +...
The initial terms begin:
a(1) = 1*1 + 1*3 = 4;
a(2) = 1*3 + 2*4 + 1*7 = 18;
a(3) = 1*4 + 3*7 + 3*6 + 1*12 = 55;
a(4) = 1*7 + 4*6 + 6*12 + 4*8 + 1*15 = 150; ...
		

Crossrefs

Cf. A181410.

Programs

  • Mathematica
    Table[Sum[Binomial[n,k] * DivisorSigma[1,n+k],{k,0,n}],{n,1,30}] (* Vaclav Kotesovec, Oct 05 2020 *)
  • PARI
    {a(n)=sum(k=0,n,binomial(m,k)*sigma(n+k))}

Formula

Equals the logarithmic derivative of A181410.
Conjecture: a(n) ~ c * n * 2^n, where c = Pi^2/4 = A091476. - Vaclav Kotesovec, Oct 05 2020

A363848 Decimal expansion of the arithmetic mean of the isoperimetric quotient of ellipses when expressed in terms of their eccentricity.

Original entry on oeis.org

9, 3, 3, 1, 7, 4, 6, 5, 3, 4, 9, 8, 4, 6, 2, 6, 4, 4, 0, 1, 5, 5, 4, 4, 5, 3, 5, 2, 4, 8, 4, 6, 1, 0, 6, 1, 0, 8, 6, 7, 7, 3, 8, 5, 6, 2, 0, 1, 9, 3, 4, 9, 4, 3, 5, 9, 0, 1, 0, 3, 7, 9, 9, 8, 2, 3, 6, 3, 0, 9, 4, 1, 8, 6, 5, 4, 2, 6, 2, 0, 3, 4, 4, 7, 5, 1, 9, 6
Offset: 0

Views

Author

Tian Vlasic, Jun 24 2023

Keywords

Comments

The isoperimetric quotient of a curve is defined as Q = (4*Pi*A)/p^2, where A and p are the area and the perimeter of that curve respectively.
The isoperimetric quotient of an ellipse depends only on its eccentricity e in accordance to the formula Q = (Pi^2*sqrt(1-e^2))/(4*E(e)^2), where E() is the complete elliptic integral of the second kind.

Examples

			0.933174653498462644...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[Pi^2/4 * NIntegrate[Sqrt[1-x^2]/EllipticE[x^2]^2, {x,0,1}, WorkingPrecision -> 100]]] (* Stefano Spezia, Jun 24 2023 *)

Formula

Equals ((Pi^2)/4) * Integral_{x=0..1} sqrt(1 - x^2)/E(x)^2 dx.

Extensions

More terms from Stefano Spezia, Jun 24 2023

A363874 Decimal expansion of the harmonic mean of the isoperimetric quotient of ellipses when expressed in terms of their eccentricity.

Original entry on oeis.org

8, 7, 8, 9, 2, 0, 6, 5, 0, 8, 2, 9, 6, 0, 4, 1, 2, 4, 6, 2, 0, 2, 9, 7, 3, 2, 0, 0, 5, 3, 0, 7, 8, 4, 1, 6, 0, 2, 4, 9, 3, 3, 6, 4, 8, 6, 4, 2, 2, 9, 7, 7, 8, 0, 2, 0, 8, 9, 5, 7, 7, 3, 5, 2, 7, 1, 5, 0, 7, 2, 5, 3, 7, 1, 5, 9, 8, 8, 1, 9, 1, 8, 1, 8, 2, 8, 4, 3, 6
Offset: 0

Views

Author

Tian Vlasic, Jun 25 2023

Keywords

Comments

The isoperimetric quotient of a curve is defined as Q = (4*Pi*A)/p^2, where A and p are the area and the perimeter of that curve respectively.
The isoperimetric quotient of an ellipse depends only on its eccentricity e in accordance to the formula Q = (Pi^2*sqrt(1-e^2))/(4*E(e)^2), where E() is the complete elliptic integral of the second kind.

Examples

			0.87892065082960412...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[Pi^2/(4 * NIntegrate[EllipticE[x^2]^2/Sqrt[1 - x^2], {x, 0, 1}, WorkingPrecision -> 100])]]
  • PARI
    Pi^2/(4*intnum(x=0,1,(ellE(x)^2)/sqrt(1 - x^2))) \\ Hugo Pfoertner, Jun 25 2023

Formula

Equals Pi^2/(4*Integral_{x=0..1} (E(x)^2)/sqrt(1 - x^2) dx).

A073347 a(1)=1; a(n+1) is the smallest integer > a(n) such that Sum_{k=a(n)..a(n+1)} 1/sqrt(k) > Pi.

Original entry on oeis.org

1, 5, 14, 28, 46, 69, 97, 130, 168, 211, 259, 311, 368, 430, 497, 569, 646, 728, 815, 907, 1004, 1105, 1211, 1322, 1438, 1559, 1685, 1816, 1952, 2093, 2239, 2390, 2546, 2706, 2871, 3041, 3216, 3396, 3581, 3771, 3966, 4166, 4371, 4581, 4796, 5016, 5240, 5469
Offset: 1

Views

Author

Benoit Cloitre, Aug 23 2002

Keywords

Crossrefs

Cf. A091476.

Programs

  • Mathematica
    a[1] = 1; a[n_] := a[n] = Module[{k = a[n - 1], s = 0}, While[(s += 1/Sqrt[k]) < Pi, k++]; k]; Array[a, 50] (* Amiram Eldar, May 19 2022 *)

Formula

a(n) is asymptotic to Pi^2*n^2/4.

Extensions

a(1) = 1 inserted by Amiram Eldar, May 19 2022

A175295 Decimal expansion of the integral of cos(Pi*x)*log(x)/x^2 from x=1 to infinity.

Original entry on oeis.org

0, 2, 9, 9, 1, 3, 2, 0, 3, 9, 8, 3, 9, 3, 4, 9, 7, 8, 4, 3, 9, 3, 0, 1, 7, 9, 2, 2, 3, 5, 6, 2, 4, 5, 9, 0, 7, 6, 3, 8, 7, 8, 1, 8, 9, 4, 7, 7, 2, 1, 4, 3, 6, 8, 4, 2, 9, 2, 3, 2, 9, 4, 8, 8, 0, 6, 1, 3, 3, 0, 8, 5, 2, 3, 5, 1, 8, 3, 7, 6, 5, 3, 1, 7, 8, 7, 7, 5, 7, 8, 8, 2, 2, 6, 7, 1, 7, 8, 1, 1, 5, 4, 6, 8, 7
Offset: 0

Views

Author

R. J. Mathar, Mar 24 2010

Keywords

Examples

			0.02991320398393497843930179...
		

Programs

  • Maple
    evalf(1+Pi^2/2*( gamma+log(Pi)-1 ) -Pi^2*hypergeom([1/2,1/2,1], [3/2,3/2,3/2,2],-Pi^2/4)/2 ) ;
  • Mathematica
    Join[{0}, RealDigits[ N[1/2*(Pi^2*(-2*HypergeometricPFQ[{1/2, 1/2}, {3/2, 3/2, 3/2}, -Pi^2/4] + Log[Pi] + EulerGamma - 1) + 2*Pi*SinIntegral[Pi] - 2), 105]][[1]]] (* Jean-François Alcover, Nov 08 2012 *)
    Join[{0},RealDigits[NIntegrate[Cos[Pi*x] Log[x]/x^2,{x,1,\[Infinity]}, WorkingPrecision->1000],10,120][[1]]] (* Harvey P. Dale, Nov 01 2017 *)

Formula

1+ A102753*( A053510 -1 + A001620 - 3F4(1/2,1/2,1; 3/2,3/2,3/2,2 ; -A091476) ) .

A261813 Decimal expansion of (Pi/4)^N*(N^N/N!)^2 for N = 3.

Original entry on oeis.org

9, 8, 1, 0, 5, 7, 9, 7, 3, 0, 8, 7, 6, 1, 1, 4, 9, 7, 7, 3, 9, 6, 8, 0, 2, 8, 1, 4, 2, 0, 0, 0, 5, 0, 8, 2, 5, 7, 0, 4, 0, 9, 5, 2, 1, 0, 2, 9, 9, 5, 8, 4, 8, 5, 6, 3, 5, 0, 4, 2, 0, 2, 5, 9, 4, 0, 7, 4, 9, 2, 1, 4, 1, 8, 5, 4, 3, 8, 3, 5, 5, 0, 9, 4, 8, 8, 3, 8, 9, 9, 8, 5, 9, 7, 0, 0, 6, 9, 5, 9, 5, 1, 3, 4, 3
Offset: 1

Views

Author

Stanislav Sykora, Nov 19 2015

Keywords

Comments

The general expression is a lower bound (due to H. Minkowski) on the discriminant of a number field of degree N.
The corresponding value for N = 2 matches A091476.

Examples

			9.8105797308761149773968028142000508257040952102995848563504202594...
		

References

  • B. Mazur, Algebraic Numbers, in The Princeton Companion to Mathematics, Editor T. Gowers, Princeton University Press, 2008, Section IV.1, page 330.

Crossrefs

Cf. A000796, A091476 (N=2).

Programs

  • Mathematica
    n = 3; First@ RealDigits[N[(Pi/4)^n (n^n/n!)^2, 120]] (* Michael De Vlieger, Nov 19 2015 *)
  • PARI
    N=3;(Pi/4)^N*(N^N/N!)^2

Formula

Equals 81*Pi^3/256.

A369880 Decimal expansion of sinh(Pi/2)/(Pi/2)^2.

Original entry on oeis.org

9, 3, 2, 6, 8, 1, 3, 1, 4, 7, 8, 6, 3, 5, 1, 0, 1, 7, 7, 7, 3, 6, 9, 7, 5, 5, 7, 8, 0, 7, 9, 9, 0, 2, 3, 5, 0, 6, 6, 1, 9, 2, 0, 9, 3, 8, 7, 6, 9, 7, 5, 3, 1, 5, 4, 5, 6, 3, 4, 1, 2, 6, 4, 4, 0, 3, 1, 5, 6, 8, 4, 7, 9, 2, 1, 1, 6, 4, 4, 1, 1, 3, 9, 5, 6, 1, 9, 6, 2, 2, 8, 8, 5, 3, 9, 6, 5, 3, 8, 7, 4, 1, 7, 7, 1
Offset: 0

Views

Author

Amiram Eldar, Feb 04 2024

Keywords

Examples

			0.93268131478635101777369755780799023506619209387697...
		

References

  • József Sándor and Borislav Crstici, Handbook of Number theory II, Kluwer Academic Publishers, 2004, Chapter 4, p. 424.

Crossrefs

Programs

  • Mathematica
    RealDigits[Sinh[Pi/2]/(Pi/2)^2, 10, 120][[1]]
  • PARI
    sinh(Pi/2)/(Pi/2)^2

Formula

Equals Sum_{k>=0} (-1/16)^A000120(k)/D(k)^4, where D(k) = A096111(k-1) for k >= 1, and D(0) = 1 (Borwein and Borwein, 1992).

A145427 Decimal expansion of Sum_{n>=0} (n!/(n+3)!)^2.

Original entry on oeis.org

0, 2, 9, 9, 0, 1, 1, 0, 0, 2, 7, 2, 3, 3, 9, 6, 5, 4, 7, 0, 8, 6, 2, 2, 7, 4, 9, 9, 6, 9, 0, 3, 7, 7, 8, 3, 8, 2, 8, 4, 2, 4, 8, 5, 1, 8, 1, 0, 1, 9, 7, 6, 5, 6, 6, 0, 3, 3, 3, 7, 3, 4, 4, 0, 5, 5, 0, 1, 1, 2, 0, 5, 6, 0, 4, 8, 0, 1, 3, 1, 0, 7, 5, 0, 4, 4, 3, 3, 5, 0, 9, 2, 9
Offset: 0

Views

Author

R. J. Mathar, Feb 08 2009

Keywords

Examples

			0.0299011002723396547...
		

References

  • Alexander Apelblat, Tables of Integrals and Series, Harri Deutsch, (1996), 4.1.32.

Crossrefs

Programs

  • Maple
    1/4*Pi^2-39/16 ;
  • Mathematica
    RealDigits[Pi^2/4 - 39/16, 10, 120, -1][[1]] (* Amiram Eldar, Jun 19 2023 *)

Formula

Equals A091476 - 2.4375.

A225016 Decimal expansion of Pi^3/8.

Original entry on oeis.org

3, 8, 7, 5, 7, 8, 4, 5, 8, 5, 0, 3, 7, 4, 7, 7, 5, 2, 1, 9, 3, 4, 5, 3, 9, 3, 8, 3, 3, 8, 7, 6, 7, 4, 4, 0, 0, 2, 7, 8, 1, 6, 1, 0, 7, 0, 7, 3, 5, 6, 3, 8, 4, 6, 1, 7, 6, 8, 0, 6, 7, 2, 6, 2, 9, 7, 5, 7, 9, 9, 3, 6, 4, 6, 8, 3, 2, 1, 3, 2, 5, 4, 6, 9, 5, 8, 3, 7, 6, 2, 9, 0, 7, 5, 3, 6, 0, 7, 7, 4
Offset: 1

Views

Author

Jean-François Alcover, Apr 24 2013

Keywords

Examples

			3.875784585037477521934539383387674400278161070735638461768067262975799364683...
		

Crossrefs

Programs

Formula

Equals Integral_{x>0} log(x)^2/(1+x^2) dx.
Equals Integral_{x=0..Pi/2} log(tan(x))^2 dx.
Equals Integral_{x=0..Pi/2} log(sin(x)^3)*log(sin(x))-(3*Pi/2)*log(2)^2 dx.
Equals (27/7) * Sum_{k>=0} binomial(2*k, k)/((2*k+1)^3*16^k);
Equals (27/7) * 4F3([1/2, 1/2, 1/2, 1/2], [3/2, 3/2, 3/2], 1/4), where pFq() is the generalized hypergeometric function.
From Amiram Eldar, Aug 21 2020: (Start)
Equals Integral_{x=0..oo} x^2/cosh(x) dx.
Equals 2 + Integral_{x=0..oo} x^2 * exp(-x) * tanh(x) dx. (End)
From Gleb Koloskov, Jun 15 2021: (Start)
Equals 2*Integral_{x=0..1} log(x)^2/(1+x^2) dx.
Equals 2*Integral_{x=1..oo} log(x)^2/(1+x^2) dx.
Equals 2*(-1)^n*Integral_{x=-1/e..0} W(n,x)*(1-W(n,x))*log(-W(n,x))^2/x/(1-W(n,x)^4) dx, where W=LambertW, for n=0 and n=-1. (End)

Extensions

Offset corrected by Rick L. Shepherd, Jan 01 2014

A353127 Decimal expansion of Pi^2/4 - log(2).

Original entry on oeis.org

1, 7, 7, 4, 2, 5, 3, 9, 1, 9, 7, 1, 2, 3, 9, 4, 3, 4, 5, 2, 9, 1, 3, 9, 0, 6, 2, 8, 5, 1, 0, 8, 6, 1, 2, 1, 5, 7, 5, 2, 9, 2, 4, 7, 1, 7, 4, 4, 9, 9, 4, 2, 4, 0, 2, 4, 8, 2, 6, 5, 7, 3, 3, 4, 5, 6, 1, 6, 1, 7, 5, 8, 3, 6, 3, 5, 1, 0, 6, 5, 9, 5, 1, 4, 4, 5, 8, 0, 0, 2
Offset: 1

Views

Author

Bernard Schott, Apr 24 2022

Keywords

Comments

Limit of the series u where u(n) = 1/n when n is a square, and u(n) = (-1)^n/n otherwise.

Examples

			1.77425391971239434529139062851086121575292471744...
		

References

  • M. Lepez, Les Grands classiques de Mathématiques, Classes préparatoires scientifiques, Analyse, Exercices corrigés et commentés, MP-PC-PT, Bréal, 1995, Exercice 201, p. 29.

Crossrefs

Cf. A091476 (Pi^2/4), A002162 (log(2)).

Programs

  • Maple
    evalf(Pi^2/4 - log(2),100);
  • Mathematica
    RealDigits[Pi^2/4 - Log[2], 10, 100][[1]] (* Amiram Eldar, Apr 24 2022 *)
  • PARI
    Pi^2/4 - log(2) \\ Michel Marcus, Apr 24 2022

Formula

Equals A091476 - A002162.
Equals Sum_{k>=1} ( (-1)^k/k + 2/(2*k-1)^2 ).
Previous Showing 11-20 of 21 results. Next