cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A331805 Integers k such that k is equal to the sum of the nonprime proper divisors of k.

Original entry on oeis.org

42, 1316, 131080256
Offset: 1

Views

Author

G. L. Honaker, Jr., Jan 26 2020

Keywords

Comments

The number 37778715690312487141376 is also in the sequence. - Daniel Suteu, Jan 27 2020
The first 3 terms have the form (2^p-1)*(2^(p-1))*((2^p-1)^2-2), i.e., a Perfect number times a Carol prime. - G. L. Honaker, Jr., Jan 27 2020
In other words, the values of p are given by the intersection of A091515 and A000043. Currently, only four such values of p are known: {2, 3, 7, 19}. - Daniel Suteu, Jan 27 2020
From Bernard Schott, Jan 28 2020: (Start)
Proposition: If a number N_p is of the form Q_p * C_p where Q_p = (2^(p-1)) * (2^p - 1) is a perfect number and C_p = (2^p-1)^2-2 is a Carol prime then, the sum of the nonprime proper divisors of N_p called S_p(N_p) is equal to N_p.
Proof:
The sum of the nonprime proper divisors of N_p is:
S_p(N_p) = (2* Q_p - 2 - (2^p-1)) + ((Q_p - 1) * C_p).
In the first parenthesis, there is the sum of the nonprime proper divisors of N_p coming only from the perfect number Q_p, then in the second parenthesis, there is the sum of the nonprime proper divisors of N_p coming from C_p.
Then, this sum of the nonprime proper divisors of N_p, S_p(N_p) is indeed equal to N_p = (2^(p-1)) * (2^p-1) * ((2^p-1)^2-2).
Hence, (2^19-1)*(2^(19-1))*((2^19-1)^2-2) = 37778715690312487141376 is a term. (End)
10^13 < a(4) <= 72872313094554244192 = 2^5 * 109 * 151 * 65837 * 2101546957. - Giovanni Resta, Jan 28 2020

Examples

			42 is a term because 42 = 1 + 6 + 14 + 21.
1316 is a term because 1316 = 1 + 4 + 14 + 28 + 94 + 188 + 329 + 658.
		

Crossrefs

Cf. A000043, A091515, A091516 (Carol primes).

Programs

  • Mathematica
    fun[p_, e_] := (p^(e+1) - 1)/(p - 1); npsigma[n_] := Times @@ fun @@@ (f = FactorInteger[n]) - Plus @@ First /@ f;; Select[Range[2, 1500], npsigma[#] == 2# &] (* Amiram Eldar, Jan 26 2020 *)
  • PARI
    isok(n) = sigma(n) - n - vecsum(factor(n)[,1]) == n; \\ Daniel Suteu, Jan 27 2020

Extensions

a(2) from Chuck Gaydos
a(3) from Amiram Eldar, Jan 26 2020

A098939 a(n) = (2^n - 1)^11 - 2.

Original entry on oeis.org

-2, -1, 177145, 1977326741, 8649755859373, 25408476896404829, 62050608388552823485, 138624799340320978519421, 296443535898840969287109373, 620340165367069806017523226109, 1284197945649659948122178573052925
Offset: 0

Views

Author

Parthasarathy Nambi, Oct 21 2004

Keywords

Examples

			a(2) = (2^2 - 1)^11 - 2 = 177145.
		

Crossrefs

These are similar to Carol's numbers (A091515).

Programs

Extensions

More terms from Stefan Steinerberger, Mar 06 2006

A098940 a(n) = (2^n - 1)^7 - 2.

Original entry on oeis.org

-2, -1, 2185, 823541, 170859373, 27512614109, 3938980639165, 532875860165501, 70110209207109373, 9098007718612700669, 1172544775637859048445, 150599974607076225726461, 19309780749956356667109373, 2473765232992079297629970429
Offset: 0

Views

Author

Parthasarathy Nambi, Oct 21 2004

Keywords

Examples

			a(2) = (2^2 - 1)^7 - 2 = 2185.
		

Crossrefs

These are similar to Carol's numbers (A091515).

Programs

Extensions

More terms from Stefan Steinerberger, Mar 06 2006

A099360 a(n) = (2^n + 1)^4 - 2.

Original entry on oeis.org

14, 79, 623, 6559, 83519, 1185919, 17850623, 276922879, 4362470399, 69257922559, 1103812890623, 17626570956799, 281749955297279, 4505799053311999, 72075187834650623, 1153062248537784319, 18447869999386460159
Offset: 0

Views

Author

Parthasarathy Nambi, Nov 16 2004

Keywords

Crossrefs

Programs

Extensions

More terms from Stefan Steinerberger, Mar 06 2006

A118558 a(n) = (2^n-1)^4 - 2.

Original entry on oeis.org

-2, -1, 79, 2399, 50623, 923519, 15752959, 260144639, 4228250623, 68184176639, 1095222947839, 17557851463679, 281200199450623, 4501401006735359, 72040003462430719, 1152780773560811519, 18445618199572250623, 295138898083176775679, 4722294425687923097599
Offset: 0

Views

Author

Jonathan Vos Post, May 03 2006

Keywords

Examples

			a(0) = (2^0 - 1)^4 - 2 = 0^4 - 2 = -2.
a(1) = (2^1 - 1)^4 - 2 = 1^4 - 2 = -1.
a(2) = (2^2 - 1)^4 - 2 = 3^4 - 2 = 79.
		

Crossrefs

Programs

Formula

a(n) = (2^n - 1)^4 - 2.
G.f.: (1984*x^4-2120*x^3+510*x^2-61*x+2) / ((x-1)*(2*x-1)*(4*x-1)*(8*x-1)*(16*x-1)). - Colin Barker, Apr 30 2013

Extensions

Offset changed to 0 by Paolo Xausa, Apr 19 2024

A173888 Exactly one of (2^n-1)^2-2 and (2^n+1)^2-2 is prime.

Original entry on oeis.org

0, 1, 4, 5, 6, 7, 8, 9, 10, 17, 19, 23, 25, 32, 51, 55, 65, 87, 129, 132, 159, 171, 175, 180, 242, 315, 324, 358, 393, 435, 467, 491, 501, 507, 555, 591, 680, 786, 800, 1070, 1459, 1650, 1707, 2813, 2923, 3281, 4217, 5153, 6287, 6365, 6462, 10088, 10367, 14289
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Mar 01 2010

Keywords

Comments

The numbers which are in A091513 or A091515, but not in both sequences. - R. J. Mathar, Mar 09 2010

Examples

			a(1)=1 because (2^1-1)^2-2=-1 is nonprime and (2^1+1)^2-2=7 is prime.
		

Crossrefs

Extensions

Corrected (0 inserted, 12, 16, 18, 21 removed) and extended by R. J. Mathar, Mar 09 2010

A173903 Numbers k such that both (2^k+1)^2-2 and (2^k-1)^2-2 are prime.

Original entry on oeis.org

2, 3, 12, 15, 18, 21, 27
Offset: 1

Views

Author

Vincenzo Librandi, Mar 08 2010

Keywords

Comments

a(8) > 9394. - Max Z. Scialabba, Jan 21 2024
a(8) > 695631 using A091513 and A091515. - Michael S. Branicky, Oct 24 2024

Crossrefs

Programs

  • Magma
    [n: n in [1..400] | IsPrime((2^n-1)^2-2) and IsPrime((2^n+1)^2-2)];
  • Mathematica
    Select[Range[3000], PrimeQ[((2^# + 1)^2 - 2)]&&PrimeQ[((2^# - 1)^2 - 2)] &] (* Vincenzo Librandi, Aug 21 2014 *)

Formula

A091513 INTERSECT A091515. - R. J. Mathar, Jul 06 2010

Extensions

Definition clarified by Jon E. Schoenfield, Jun 18 2010
Previous Showing 11-17 of 17 results.