A367684
Number of integer partitions of n whose multiset multiplicity kernel is a submultiset.
Original entry on oeis.org
1, 1, 2, 2, 4, 5, 8, 10, 14, 17, 25, 30, 39, 51, 66, 79, 102, 125, 154, 191, 233, 284, 347, 420, 499, 614, 726, 867, 1031, 1233, 1437, 1726, 2002, 2375, 2770, 3271, 3760, 4455, 5123, 5994, 6904, 8064, 9199, 10753, 12241, 14202, 16189, 18704, 21194, 24504
Offset: 0
The a(1) = 1 through a(7) = 10 partitions:
(1) (2) (3) (4) (5) (6) (7)
(11) (111) (22) (221) (33) (322)
(211) (311) (222) (331)
(1111) (2111) (411) (511)
(11111) (2211) (2221)
(3111) (4111)
(21111) (22111)
(111111) (31111)
(211111)
(1111111)
The case of strict partitions is
A000012.
Includes all partitions with distinct multiplicities
A098859, ranks
A130091.
These partitions have ranks
A367685.
A072233 counts partitions by number of parts.
A116608 counts partitions by number of distinct parts.
A116861 counts partitions by sum of distinct parts.
-
submultQ[cap_,fat_]:=And@@Function[i, Count[fat,i]>=Count[cap, i]]/@Union[List@@cap];
mmk[q_List]:=With[{mts=Length/@Split[q]}, Sort[Table[Min@@Select[q,Count[q,#]==i&], {i,mts}]]];
Table[Length[Select[IntegerPartitions[n], submultQ[mmk[#],#]&]], {n,0,15}]
A381632
Numbers such that (greatest prime exponent) = (sum of distinct prime indices).
Original entry on oeis.org
2, 9, 24, 54, 72, 80, 108, 125, 216, 224, 400, 704, 960, 1215, 1250, 1568, 1664, 2000, 2401, 2500, 2688, 2880, 4352, 4800, 5000, 5103, 6075, 7290, 7744, 8064, 8448, 8640, 8960, 9375, 9728, 10000, 10976, 14400, 14580, 18816, 19968, 21632, 23552, 24000, 24057
Offset: 1
The terms together with their prime indices begin:
2: {1}
9: {2,2}
24: {1,1,1,2}
54: {1,2,2,2}
72: {1,1,1,2,2}
80: {1,1,1,1,3}
108: {1,1,2,2,2}
125: {3,3,3}
216: {1,1,1,2,2,2}
224: {1,1,1,1,1,4}
400: {1,1,1,1,3,3}
704: {1,1,1,1,1,1,5}
960: {1,1,1,1,1,1,2,3}
For (length) instead of (sum of distinct) we have
A000961.
Including number of parts gives
A062457 (degenerate).
Partitions of this type are counted by
A381079.
A239964 counts partitions with max multiplicity = length, ranks
A212166.
A382302 counts partitions with max = max multiplicity = distinct length, ranks
A381543.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],Max@@Last/@FactorInteger[#]==Total[Union[prix[#]]]&]
A382303
Number of integer partitions of n with exactly as many ones as the next greatest multiplicity.
Original entry on oeis.org
0, 0, 0, 1, 1, 1, 3, 2, 4, 5, 8, 6, 15, 13, 19, 25, 33, 36, 54, 58, 80, 96, 122, 141, 188, 217, 274, 326, 408, 474, 600, 695, 859, 1012, 1233, 1440, 1763, 2050, 2475, 2899, 3476, 4045, 4850, 5630, 6695, 7797, 9216, 10689, 12628, 14611, 17162, 19875, 23253
Offset: 0
The a(3) = 1 through a(10) = 8 partitions:
(21) (31) (41) (51) (61) (71) (81) (91)
(321) (421) (431) (531) (541)
(2211) (521) (621) (631)
(3311) (32211) (721)
(222111) (4321)
(4411)
(33211)
(42211)
The Heinz numbers of these partitions are
A360014.
A091602 counts partitions by the greatest multiplicity, rank statistic
A051903.
A239964 counts partitions with max multiplicity = length, ranks
A212166.
A382302 counts partitions with max = max multiplicity = distinct length, ranks
A381543.
Cf.
A047966,
A051904,
A091605,
A116861,
A237984,
A239455,
A362608,
A363724,
A381079,
A381437,
A381438.
-
Table[Length[Select[IntegerPartitions[n],Count[#,1]==Max@@Length/@Split[DeleteCases[#,1]]&]],{n,0,30}]
Original entry on oeis.org
1, -1, -2, 0, 1, 3, 4, 3, 3, 0, 0, -3, -4, -7, -9, -9, -9, -9, -9, -4, -5, -4, -3, 2, 3, 5, 6, 11, 11, 17, 17, 17, 17, 17, 18, 18, 18, 18, 18, 11, 10, 13, 13, 10, 11, 10, 10, 3, 4, 0, 1, -2, -2, -3, -3, -9, -8, -7, -7, -19, -19, -19, -19, -19, -20, -21, -21, -21, -21, -27
Offset: 1
-
b[n_, i_, k_]:= b[n, i, k]= If[n==0, 1, If[i>n, 0, Sum[b[n-i*j, i+1, Min[k, Quotient[n-i*j, i+1]]], {j, 0, k}]]];
t[n_, k_]:= t[n, k]= If[k>n, 0, b[n,1,k] - b[n,1,k-1]]; (* t = A091602 *)
M := With[{p = 110}, Table[t[n, k], {n, p}, {k, p}]];
T := Inverse[M]; (* T = A091603 *)
Table[T[[n, 1]], {n, 100}] (* G. C. Greubel, Nov 27 2021 *)
A134979
Triangle read by rows: T(n,k) = number of partitions of n where the maximum number of objects in partitions of any given size is k.
Original entry on oeis.org
1, 0, 2, 0, 1, 2, 0, 1, 1, 3, 0, 0, 3, 2, 2, 0, 0, 2, 4, 1, 4, 0, 0, 1, 6, 3, 3, 2, 0, 0, 1, 6, 4, 6, 1, 4, 0, 0, 0, 6, 7, 8, 3, 3, 3, 0, 0, 0, 5, 7, 14, 4, 6, 2, 4, 0, 0, 0, 5, 7, 18, 7, 9, 5, 3, 2, 0, 0, 0, 3, 10, 22, 9, 14, 6, 6, 1, 6, 0, 0, 0, 2, 9, 26, 15, 19, 11, 9, 3, 5, 2
Offset: 1
For the partition [3,2^2], there are 3 objects in the part of size 3 and 4 objects in the parts of size 2, so this partition is counted towards T(7,4).
Triangle T(n,k) begins:
1;
0, 2;
0, 1, 2;
0, 1, 1, 3;
0, 0, 3, 2, 2;
0, 0, 2, 4, 1, 4;
0, 0, 1, 6, 3, 3, 2;
0, 0, 1, 6, 4, 6, 1, 4;
0, 0, 0, 6, 7, 8, 3, 3, 3;
0, 0, 0, 5, 7, 14, 4, 6, 2, 4;
0, 0, 0, 5, 7, 18, 7, 9, 5, 3, 2;
0, 0, 0, 3, 10, 22, 9, 14, 6, 6, 1, 6;
...
-
b:= proc(n, i, m) option remember; `if`(n=0 or i=1, x^
max(m, n), add(b(n-i*j, i-1, max(m, i*j)), j=0..n/i))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=1..n))(b(n$2, 0)):
seq(T(n), n=1..20); # Alois P. Heinz, Feb 07 2020
-
b[n_, i_, m_] := b[n, i, m] = If[n == 0 || i == 1, x^Max[m, n], Sum[b[n - i j, i - 1, Max[m, i j]], {j, 0, n/i}]];
T[n_] := Table[Coefficient[b[n, n, 0], x, i], {i, 1, n}];
Array[T, 20] // Flatten (* Jean-François Alcover, Nov 10 2020, after Alois P. Heinz *)
A385216
Greatest Heinz number of a sparse submultiset of the prime indices of n, where a multiset is sparse iff 1 is not a first difference.
Original entry on oeis.org
1, 2, 3, 4, 5, 3, 7, 8, 9, 10, 11, 4, 13, 14, 5, 16, 17, 9, 19, 20, 21, 22, 23, 8, 25, 26, 27, 28, 29, 10, 31, 32, 33, 34, 7, 9, 37, 38, 39, 40, 41, 21, 43, 44, 9, 46, 47, 16, 49, 50, 51, 52, 53, 27, 55, 56, 57, 58, 59, 20, 61, 62, 63, 64, 65, 33, 67, 68, 69
Offset: 1
The prime indices of 12 are {1,1,2}, with sparse submultisets {{},{1},{2},{1,1}}, with Heinz numbers {1,2,3,4}, so a(12) = 4.
The prime indices of 36 are {1,1,2,2}, with sparse submultisets {{},{1},{2},{1,1},{2,2}}, with Heinz numbers {1,2,3,4,9}, so a(36) = 9.
The prime indices of 462 are {1,2,4,5}, with sparse submultisets {{},{1},{2},{4},{5},{1,4},{2,4},{1,5},{2,5}}, with Heinz numbers {1,2,3,7,11,14,21,22,33}, so a(462) = 33.
The union is
A319630 (Heinz numbers of sparse multisets), complement
A104210.
A000005 counts divisors (or submultisets of prime indices).
A212166 ranks partitions with max multiplicity = length, counted by
A239964.
A381542 ranks partitions with max part = max multiplicity, counted by
A240312.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Table[Max@@Select[Divisors[n],FreeQ[Differences[prix[#]],1]&],{n,100}]
A382526
Number of integer partitions of n with fewer ones than greatest multiplicity.
Original entry on oeis.org
0, 0, 1, 1, 2, 3, 4, 6, 9, 12, 16, 24, 30, 41, 56, 72, 94, 124, 158, 205, 262, 331, 419, 531, 663, 829, 1033, 1281, 1581, 1954, 2393, 2936, 3584, 4366, 5300, 6433, 7764, 9374, 11277, 13548, 16225, 19425, 23166, 27623, 32842, 39004, 46212, 54719, 64610, 76251
Offset: 0
The a(2) = 1 through a(9) = 12 partitions:
(2) (3) (4) (5) (6) (7) (8) (9)
(22) (32) (33) (43) (44) (54)
(221) (42) (52) (53) (63)
(222) (322) (62) (72)
(331) (332) (333)
(2221) (422) (432)
(2222) (441)
(3221) (522)
(22211) (3222)
(3321)
(4221)
(22221)
The complement (greater than or equal to) is
A241131 except first, ranks
A360015.
The opposite version (greater than) is
A241131 shifted except first, ranks
A360013.
A091602 counts partitions by the greatest multiplicity, rank statistic
A051903.
A239964 counts partitions with max multiplicity = length, ranks
A212166.
A240312 counts partitions with max part = max multiplicity, ranks
A381542.
A382302 counts partitions with max = max multiplicity = distinct length, ranks
A381543.
A382856
Numbers whose prime indices do not have a mode of 1.
Original entry on oeis.org
1, 3, 5, 7, 9, 11, 13, 15, 17, 18, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 50, 51, 53, 54, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 90, 91, 93, 95, 97, 98, 99, 101, 103, 105, 107, 108, 109, 111, 113, 115
Offset: 1
The terms together with their prime indices begin:
1: {}
3: {2}
5: {3}
7: {4}
9: {2,2}
11: {5}
13: {6}
15: {2,3}
17: {7}
18: {1,2,2}
19: {8}
21: {2,4}
23: {9}
25: {3,3}
27: {2,2,2}
The case of non-unique mode is
A024556.
The complement is
A360015 except first.
Partitions of this type are are counted by
A382526 except first, complement
A241131.
A091602 counts partitions by the greatest multiplicity, rank statistic
A051903.
A240312 counts partitions with max part = max multiplicity, ranks
A381542.
Cf.
A000265,
A002865,
A106529,
A327473,
A327476,
A362605,
A363486,
A356862,
A360013,
A360014,
A381437.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],FreeQ[Commonest[prix[#]],1]&]
A355522
Triangle read by rows where T(n,k) is the number of reversed integer partitions of n with maximal difference k, if singletons have maximal difference 0.
Original entry on oeis.org
2, 2, 1, 3, 1, 1, 2, 3, 1, 1, 4, 3, 2, 1, 1, 2, 6, 3, 2, 1, 1, 4, 6, 6, 2, 2, 1, 1, 3, 10, 6, 5, 2, 2, 1, 1, 4, 11, 11, 6, 4, 2, 2, 1, 1, 2, 16, 13, 10, 5, 4, 2, 2, 1, 1, 6, 17, 19, 12, 9, 4, 4, 2, 2, 1, 1, 2, 24, 24, 18, 11, 8, 4, 4, 2, 2, 1, 1
Offset: 2
Triangle begins:
2
2 1
3 1 1
2 3 1 1
4 3 2 1 1
2 6 3 2 1 1
4 6 6 2 2 1 1
3 10 6 5 2 2 1 1
4 11 11 6 4 2 2 1 1
2 16 13 10 5 4 2 2 1 1
6 17 19 12 9 4 4 2 2 1 1
2 24 24 18 11 8 4 4 2 2 1 1
4 27 34 22 17 10 7 4 4 2 2 1 1
4 35 39 33 20 15 9 7 4 4 2 2 1 1
5 39 56 39 30 19 14 8 7 4 4 2 2 1 1
For example, row n = 8 counts the following reversed partitions:
(8) (233) (35) (125) (26) (116) (17)
(44) (1223) (134) (11114) (1115)
(2222) (11123) (224)
(11111111) (11222) (1124)
(111122) (1133)
(1111112) (111113)
Crossrefs found in the link are not repeated here.
This is a trimmed version of
A238353, which extends to k = n.
For minimum instead of maximum we have
A238354.
Ignoring singletons entirely gives
A238710.
A001522 counts partitions with a fixed point (unproved), ranked by
A352827.
A279945 counts partitions by number of distinct differences.
-
Table[Length[Select[Reverse/@IntegerPartitions[n], If[Length[#]==1,0,Max@@Differences[#]]==k&]],{n,2,15},{k,0,n-2}]
Comments