cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-29 of 29 results.

A293469 a(n) = Sum_{k=0..n} (2*k-1)!!*binomial(2*n-k, n).

Original entry on oeis.org

1, 3, 12, 57, 330, 2436, 23226, 277389, 3966534, 65517210, 1220999208, 25279328958, 575024187192, 14247595540542, 381846383109030, 11004598454925405, 339324532631899110, 11146022446431209490, 388535338484934710040, 14324570939127320452350, 556887682690152668745660
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 09 2017

Keywords

Crossrefs

Programs

  • Maple
    seq(add(doublefactorial(2*k-1)*binomial(2*n-k,n),k=0..n),n=0..40); # Robert Israel, Oct 09 2017
  • Mathematica
    Table[Sum[(2 k - 1)!! Binomial[2 n - k, n], {k, 0, n}], {n, 0, 20}]
    Table[SeriesCoefficient[(1/(1 - x)^(n + 1)) 1/(1 + ContinuedFractionK[-k x, 1, {k, 1, n}]), {x, 0, n}], {n, 0, 20}]
    Table[SeriesCoefficient[(1/(1 - x)^(n + 1)) Sum[(2 k - 1)!! x^k, {k, 0, n}], {x, 0, n}], {n, 0, 20}]

Formula

a(n) = [x^n] 1/((1 - x)^(n+1)*(1 - x/(1 - 2*x/(1 - 3*x/(1 - 4*x/(1 - 5*x/(1 - 6*x/(1 - ...)))))))), a continued fraction.
a(n) = Gamma(n+1/2)*hypergeom([1/2, 1, -n], [-2*n], 2)*4^n/(n!*sqrt(Pi)). - Robert Israel, Oct 09 2017
a(n) ~ 2^(n + 1/2) * n^n / exp(n - 1/2). - Vaclav Kotesovec, Oct 18 2017

A329096 Row sums of A329057.

Original entry on oeis.org

1, 2, 8, 47, 374, 3852, 49398, 762785, 13805702, 286796072, 6727496456, 175903776622, 5073226515772, 160000741383368, 5478160073933490, 202366832844684645, 8022796547785815878, 339769654607776375824, 15309183806159727889536, 731253261602981693567090, 36909816019024064633444820
Offset: 0

Views

Author

Stefano Spezia, Nov 04 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(Binomial[2n,n]Hypergeometric2F1[1,-n,-2n,1+n])/(1+n),{n,0,20}]
  • PARI
    {a(n) = sum(k=0,n, binomial(2*n-k, n) * (n+1)^(k-1) )}
    for(n=0,25,print1(a(n),", ")) \\ Paul D. Hanna, Sep 12 2024
    
  • PARI
    {a(n) = my(C = (1 - sqrt(1-4*x +x^2*O(x^n)))/2);
    (1/(n+1)) * polcoef( C'/(1 - (n+1)*C), n)}
    for(n=0,25,print1(a(n),", ")) \\ Paul D. Hanna, Sep 12 2024

Formula

a(n) = binomial(2*n, n)*2F1([1, -n], [-2*n], 1 + n)/(1 + n), where 2F1 is the hypergeometric function.
a(n) ~ exp(2) * n^(n-1). - Vaclav Kotesovec, Nov 04 2019
From Paul D. Hanna, Sep 12 2024: (Start)
a(n) = Sum_{k=0..n} binomial(2*n-k, n) * (n+1)^(k-1).
a(n) = (1/(n+1)) * [x^n] C(x)'/(1 - (n+1)*C(x)) for n >= 0 where C(x) = (1 - sqrt(1-4*x))/2 is the g.f. of the Catalan numbers (A000108). (End)

A113214 Riordan array (1+2x,x(1+x)).

Original entry on oeis.org

1, 2, 1, 0, 3, 1, 0, 2, 4, 1, 0, 0, 5, 5, 1, 0, 0, 2, 9, 6, 1, 0, 0, 0, 7, 14, 7, 1, 0, 0, 0, 2, 16, 20, 8, 1, 0, 0, 0, 0, 9, 30, 27, 9, 1, 0, 0, 0, 0, 2, 25, 50, 35, 10, 1, 0, 0, 0, 0, 0, 11, 55, 77, 44, 11, 1, 0, 0, 0, 0, 0, 2, 36, 105, 112, 54, 12, 1, 0, 0, 0, 0, 0, 0, 13, 91, 182, 156, 65, 13, 1
Offset: 0

Views

Author

Paul Barry, Oct 18 2005

Keywords

Comments

Row sums are Lucas numbers A000204. Diagonal sums are A007307(n+1). Inverse is (-1)^(n-k)A092392(n,k). Product with Pascal triangle (1/(1-x),x/(1-x)) is A111125.

Examples

			Triangle begins
  1;
  2,  1;
  0,  3,  1;
  0,  2,  4,  1;
  0,  0,  5,  5,  1;
  0,  0,  2,  9,  6,  1;
  0,  0,  0,  7, 14,  7,  1;
  0,  0,  0,  2, 16, 20,  8,  1;
Row 4: (1 + x*c(-x))^5 = 1 + 5*x + 5*x^2 + O(x^5). - _Peter Bala_, Sep 10 2021
		

Crossrefs

Formula

T(n, k) = C(k, n-k) + 2*C(k, n-k-1).
T(n, k) = Sum_{j = 0..n} (-1)^(n-j)*C(n, j)*C(j+k, 2*k)*(2*j+1)/(2*k+1).
From Peter Bala, Sep 10 2021: (Start)
T(n,k) = T(n-1,k-1) + T(n-2,k-1) with boundary conditions T(n,n) = 1, T(1,0) = 2 and T(n,k) = 0 for k < 0 or k > n.
The entries in row n, read in reverse order, are the coefficients in the n-th degree Taylor polynomial of (1 + x*c(-x))^(n+1) at x = 0, where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the g.f. of the Catalan numbers A000108. (End)

A117362 Riordan array (1-2x,x(1-x)).

Original entry on oeis.org

1, -2, 1, 0, -3, 1, 0, 2, -4, 1, 0, 0, 5, -5, 1, 0, 0, -2, 9, -6, 1, 0, 0, 0, -7, 14, -7, 1, 0, 0, 0, 2, -16, 20, -8, 1, 0, 0, 0, 0, 9, -30, 27, -9, 1, 0, 0, 0, 0, -2, 25, -50, 35, -10, 1, 0, 0, 0, 0, 0, -11, 55, -77, 44, -11, 1
Offset: 0

Views

Author

Paul Barry, Mar 10 2006

Keywords

Comments

A signed version of A113214. Inverse of A092392. Row sums are A100051(n+1) with g.f. (1-2x)/(1-x+x^2). Diagonal sums are A117363.

Examples

			Triangle begins
1,
-2, 1,
0, -3, 1,
0, 2, -4, 1,
0, 0, 5, -5, 1,
0, 0, -2, 9, -6, 1,
0, 0, 0, -7, 14, -7, 1,
0, 0, 0, 2, -16, 20, -8, 1
		

Formula

Number triangle T(n,k)=(-1)^(n-k)(C(k,n-k)+2*C(k, n-k-1))

A171824 Triangle T(n,k)= binomial(n + k,n) + binomial(2*n-k,n) read by rows.

Original entry on oeis.org

2, 3, 3, 7, 6, 7, 21, 14, 14, 21, 71, 40, 30, 40, 71, 253, 132, 77, 77, 132, 253, 925, 469, 238, 168, 238, 469, 925, 3433, 1724, 828, 450, 450, 828, 1724, 3433, 12871, 6444, 3048, 1452, 990, 1452, 3048, 6444, 12871, 48621, 24320, 11495, 5225, 2717, 2717, 5225, 11495, 24320, 48621
Offset: 0

Views

Author

Roger L. Bagula, Dec 19 2009

Keywords

Examples

			Triangle begins as:
       2;
       3,     3;
       7,     6,     7;
      21,    14,    14,    21;
      71,    40,    30,    40,   71;
     253,   132,    77,    77,  132,  253;
     925,   469,   238,   168,  238,  469, 925;
    3433,  1724,   828,   450,  450,  828, 1724,  3433;
   12871,  6444,  3048,  1452,  990, 1452, 3048,  6444, 12871;
   48621, 24320, 11495,  5225, 2717, 2717, 5225, 11495, 24320, 48621;
  184757, 92389, 43824, 19734, 9009, 6006, 9009, 19734, 43824, 92389, 184757;
		

Crossrefs

Row sums are A000984(n+1).

Programs

  • Magma
    T:= func< n,k | Binomial(n+k,n) + Binomial(2*n-k,n) >;
    [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Apr 29 2021
    
  • Mathematica
    T[n_, k_] = Binomial[n+k, k] + Binomial[2*n-k, n-k];
    Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten
  • Sage
    def T(n, k): return binomial(n+k,n) + binomial(2*n-k,n)
    flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Apr 29 2021

Formula

T(n,k) = A046899(n,k) + A092392(n,k).
Sum_{k=0..n} T(n,k) = binomial(2*n+2, n+1) = 2*A001700(n) = A000984(n+1). - G. C. Greubel, Apr 29 2021

Extensions

Formula and row sums reference added by the Assoc. Editors of the OEIS, Feb 24 2010

A191528 Triangle read by rows: T(n,k) is the number of left factors of Dyck paths of length n that have k returns to the axis.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 3, 2, 1, 6, 3, 1, 10, 6, 3, 1, 20, 10, 4, 1, 35, 20, 10, 4, 1, 70, 35, 15, 5, 1, 126, 70, 35, 15, 5, 1, 252, 126, 56, 21, 6, 1, 462, 252, 126, 56, 21, 6, 1, 924, 462, 210, 84, 28, 7, 1, 1716, 924, 462, 210, 84, 28, 7, 1, 3432, 1716, 792, 330, 120, 36, 8, 1, 6435, 3432, 1716, 792, 330, 120, 36, 8, 1
Offset: 0

Views

Author

Emeric Deutsch, Jun 06 2011

Keywords

Comments

Row n contains 1+floor(n/2) entries.
Sum of entries in row n is binomial(n, floor(n/2)) =A001405(n).
T(n,0) = A001405(n-1).
Rows 0, 2, 4, ... form triangle A100100.
Rows 1, 3, 5, ... form triangle A092392.
Sum_{k>=0} k*T(n,k) = A037955(n).
From Roger Ford, Oct 16 2020: (Start)
This is an empirical observation. T(n,k) = the number of different semi-meander arch depth models with n+2 top arches and k+1 arches at depth 0. T(3,1) = the number of different semi-meander arch depth models with 5 top arches and 2 arches at depth 0.
Example: The depth of a semi-meander arch is the number of covering arches directly above the arch. The arch depth model is the number of arches at each depth starting at 0 for a specific semi-meander. The following is the arch depth models for semi-meanders with 5 top arches.
/\ /\
//\\ / \
///\\\ depth //\ \ depth
////\\\\ /\ (0)(1)(2)(3) ///\\/\\ /\ (0)(1)(2)
depth 0123 0 model= 2 1 1 1 012 1 0 model= 2 2 1
/\
//\\ /\ depth /\ /\ depth
///\\\ //\\ (0)(1)(2) //\\ //\\ /\ (0)(1)
depth 012 01 model= 2 2 1 01 01 0 model= 3 2
/\
/ \ depth
//\/\\ /\ /\ (0)(1)
depth 01 1 0 0 model= 3 2
There are 5 more semi-meanders with 5 top arches. They are reflections of the above semi-meanders over a center vertical line and they yield the same arch depth models as the semi-meanders above.
T(3,1) = 2 different models= 2 2 1 and 2 1 1 1;
T(3,2) = 1 model= 3 2 (End).

Examples

			T(6,2)=3 because we have U(D)U(D)UU, U(D)UUD(D), and UUD(D)U(D), where U=(1,1) and D=(1,-1) (the return steps to the axis are shown between parentheses).
Triangle starts:
   1:
   1;
   1, 1;
   2, 1;
   3, 2, 1;
   6, 3, 1;
  10, 6, 3, 1;
		

Crossrefs

Programs

  • Maple
    T := proc (n, k) if k <= floor((1/2)*n) then binomial(n-k-1, ceil((1/2)*n)-1) else 0 end if end proc: for n from 0 to 16 do seq(T(n, k), k = 0 .. floor((1/2)*n)) end do; # yields sequence in triangular form
  • Mathematica
    Flatten[Table[Binomial[n-k-1,Ceiling[(n/2)-1]],{n,0,16},{k,0,Floor[n/2]}]] (* Indranil Ghosh, Mar 05 2017 *)
  • PARI
    tabf(nn) = if(n==0, print1(1,", "), {for (n=1, nn, for(k=0, floor(n/2), print1(binomial(n-k-1, ceil((n/2)-1)),", ");); print();); });
    tabf(16); \\ Indranil Ghosh, Mar 05 2017

Formula

T(n,k) = binomial(n-k-1, ceiling(n/2)-1) if 0 <= k <= floor(n/2).
G.f.: G(t,z) = 1/((1-z*c)*(1-t*z^2*c)), where c = (1-sqrt(1-4*z^2))/(2*z^2) is the Catalan function with argument z^2.

A270489 Sum_{k=0..n} ((binomial(3*k,k)*binomial(2*n-k,n))/(2*k+1)).

Original entry on oeis.org

1, 3, 12, 54, 265, 1401, 7903, 47088, 293319, 1892440, 12548041, 84988566, 585314652, 4085026386, 28820064810, 205156454376, 1471492171068, 10622954509803, 77122189800121, 562684397212060, 4123449352097229, 30336562360256955
Offset: 0

Views

Author

Vladimir Kruchinin, Mar 18 2016

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[3*k,k]*Binomial[2*n-k,n]/(2*k+1), {k,0,n}], {n,0,20}] (* Vaclav Kotesovec, Mar 18 2016 *)
  • Maxima
    taylor((sqrt(2)*sin(asin((3^(3/2)*sqrt(1-sqrt(1-4*x)))/2^(3/2))/3)*
    sqrt(1-sqrt(1-4*x)))/(sqrt(3)*(1-x/(1-(1-sqrt(1-4*x))/2)^2))/x,x,0,20);
    
  • PARI
    for(n=0,25, print1(sum(k=0,n, binomial(3*k,k)*binomial(2*n-k,n)/(2*k+1)), ", ")) \\ G. C. Greubel, Jun 05 2017

Formula

G.f.: P(C(x))/(1-x/(1-C(x)))^2/x, where C(x)=(1-sqrt(1-4*x))/2, P(x)/x is g.f. of A001764.
Recurrence: 46*(n-2)*(n-1)*n*(2*n + 1)*(133*n - 239)*a(n) = 5*(n-2)*(n-1)*(38969*n^3 - 108996*n^2 + 78733*n - 18774)*a(n-1) - 4*(n-2)*(242858*n^4 - 1286417*n^3 + 2496793*n^2 - 2103937*n + 643755)*a(n-2) + 36*(3*n - 7)*(3*n - 5)*(6*n - 13)*(6*n - 11)*(133*n - 106)*a(n-3). - Vaclav Kotesovec, Mar 18 2016
a(n) ~ 3^(6*n + 7/2) / (19^(3/2) * sqrt(Pi) * 2^(2*n+2) * 23^(n - 1/2) * n^(3/2)). - Vaclav Kotesovec, Mar 18 2016

A270490 a(n) = Sum_{i=0..(n+1)/2} binomial(2*i+1,i)*binomial(2*n-2*i,n)/(2*i+1).

Original entry on oeis.org

1, 2, 7, 24, 87, 320, 1195, 4504, 17102, 65304, 250501, 964480, 3724996, 14424504, 55983091, 217702880, 848042197, 3308490496, 12924954514, 50553798696, 197948515868, 775853655760, 3043672637457, 11950142769664, 46954356540812
Offset: 0

Views

Author

Vladimir Kruchinin, Mar 18 2016

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[2*i+1, i]*Binomial[2*n-2*i, n]/(2*i+1), {i, 0, (n+1)/2}], {n,0,20}] (* Vaclav Kotesovec, Mar 18 2016 *)
  • Maxima
    a(n):=sum(binomial(2*i+1,i)*binomial(2*n-2*i,n)/(2*i+1),i,0,(n+1)/2);
    
  • PARI
    for(n=0,25, print1(sum(k=0,n, binomial(2*k+1,k)*binomial(2*n-2*k,n)/(2*k+1)), ", ")) \\ G. C. Greubel, Jun 05 2017

Formula

G.f.: 1/x*C(C(x)^2)/(C(x)*(1-x/(1-C(x))^2)), where C(x)=(1-sqrt(1-4*x))/2.
a(n) ~ 2^(2*n+1)/sqrt(Pi*n) * (1 - Gamma(3/4)/(sqrt(Pi)*n^(1/4)) + 7*sqrt(2*Pi) / (16*n^(3/4)*Gamma(3/4))). - Vaclav Kotesovec, Mar 18 2016
Conjecture: 3*n*(n-2)*(n+2)*a(n) -4*(n+1)*(8*n^2-23*n+12)*a(n-1) +16*n *(3*n-4)*(2*n-5)*a(n-2) +8*(2*n-3)*(4*n-7)*a(n-3) -64*(2*n-5)*(n-3)*(2*n-3)*a(n-4)=0. - R. J. Mathar, Jun 07 2016

A270561 Binomial transform(2) of Motzkin numbers.

Original entry on oeis.org

1, 3, 11, 42, 164, 649, 2592, 10423, 42140, 171133, 697641, 2853587, 11707542, 48166629, 198677283, 821495226, 3404577572, 14140959469, 58859315929, 245493952745, 1025954717376, 4295887639272, 18021572480109, 75740267331717
Offset: 0

Views

Author

Vladimir Kruchinin, Mar 19 2016

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Sum[Binomial[i, 2 k] Binomial[2 k, k]/(k + 1), {k, 0, i}] Binomial[2 n - i, n - i], {i, 0, n}], {n, 0, 23}] (* or *)
    nn = 23; m = CoefficientList[Series[(1 - x - (1 - 2 x - 3 x^2)^(1/2))/(2 x^2), {x, 0, nn}], x]; Table[Sum[Binomial[2 n - k, n] m[[k + 1]], {k, 0, n}], {n, 0, nn}] (* Michael De Vlieger, Mar 19 2016, latter after Jean-François Alcover at A001006 *)
  • Maxima
    A(x):=(1-sqrt(1-4*x))/2;
    M(x) := ( 1 - x - (1-2*x-3*x^2)^(1/2) ) / (2*x^2);
    makelist(coeff(taylor(M(A(x))*A(x)/(2*x-A(x)),x,0,10),x,n),n,0,10);
    
  • Maxima
    a(n):=sum((sum((binomial(i,2*k)*binomial(2*k,k))/(k+1),k,0,i))*binomial(2*n-i,n-i),i,0,n);
    
  • PARI
    a(n) = sum(i=0, n, sum(k=0, i, binomial(i, 2*k) * binomial(2*k, k) / (k+1)) * binomial(2*n-i, n-i)); \\ Indranil Ghosh, Mar 04 2017

Formula

G.f.: M(A(x))*A(x)/(2*x-A(x)), where M(x) is g.f. of Motzkin numbers (A001006) and A(x)/x is the g.f. of Catalan numbers (A000108).
a(n) = Sum_{i=0..n}((Sum_{k=0..i}((binomial(i,2*k)*binomial(2*k,k))/(k+1)))* binomial(2*n-i,n-i)).
a(n) = Sum_{k=0,n} (T(n,k)*m(k)), where m(k) is Motzkin numbers (A001006), T(n,k) = binomial(2*n-k,n) (triangle A092392).
a(n) ~ 3^(2*n + 5/2) / (sqrt(Pi) * n^(3/2) * 2^(n + 1/2)). - Vaclav Kotesovec, Mar 19 2016
a(n) = [x^n] (1 - x - sqrt(1 - 2*x - 3*x^2))/(2*x^2*(1 - x)^(n+1)). - Ilya Gutkovskiy, Oct 30 2017
Previous Showing 21-29 of 29 results.