A203763
Vandermonde sequence using x^2 - xy + y^2 applied to (1,1,2,2,...,[n/2]).
Original entry on oeis.org
1, 1, 9, 324, 777924, 16810159716, 69136555917409344, 4549499535875623543259136, 115306876482136485813839025883201536, 73061199694724861313901918528002630365482598400
Offset: 1
-
f[j_] := Floor[(j + 1)/2]; z = 16;
u := Product[f[j]^2 - f[j] f[k] + f[k]^2, {j, 1, k - 1}]
v[n_] := Product[u, {k, 2, n}]
Table[v[n], {n, 1, z}] (* A203763 *)
Table[v[n + 1]/v[n], {n, 1, z}] (* A203764 *)
Table[Sqrt[v[n + 1]/v[n]], {n, 1, 20}] (* A203765 *)
Original entry on oeis.org
1, 7, 252, 41580, 29729700, 89278289100, 1104908105901600, 55674109640169820800, 11329124570678156834592000, 9258047307912482983660236480000, 30262334718212007877669234596364800000
Offset: 1
-
[(&*[ Binomial(2*j+3, j+4): j in [1..n]]): n in [1..20]]; // G. C. Greubel, Aug 27 2023
-
(* First program *)
f[j_]:= j+2; z=16;
v[n_]:= Product[Product[f[k] + f[j], {j,k-1}], {k,2,n}];
d[n_]:= Product[(i-1)!, {i,n}] (* A000178(n-1) *)
Table[v[n], {n,z}] (* A203472 *)
Table[v[n+1]/v[n], {n,z-1}] (* A203473 *)
Table[v[n]/d[n], {n,20}] (* A203474 *)
(* Second program *)
Table[Product[Binomial[2*j+3, j+4], {j,n}], {n,20}] (* G. C. Greubel, Aug 27 2023 *)
-
[product( binomial(2*j+5,j+5) for j in range(n) ) for n in range(1,20)] # G. C. Greubel, Aug 27 2023
A203477
a(n) = Product_{0 <= i < j <= n-1} (2^i + 2^j).
Original entry on oeis.org
1, 3, 90, 97200, 14276736000, 1107198567383040000, 178601637561927097909248000000, 237856509917156074017606774172522905600000000, 10420480393274493153643458442091600404477248333907230720000000000
Offset: 1
-
[(&*[(&*[2^j + 2^k: k in [0..j]])/2^(j+1): j in [0..n-1]]): n in [1..20]]; // G. C. Greubel, Aug 28 2023
-
a:= n-> mul(mul(2^i+2^j, i=0..j-1), j=1..n-1):
seq(a(n), n=1..10); # Alois P. Heinz, Jul 23 2017
-
(* First program *)
f[j_]:= 2^(j-1); z = 13;
v[n_]:= Product[Product[f[k] + f[j], {j,k-1}], {k,2,n}]
Table[v[n], {n,z}] (* A203477 *)
Table[v[n+1]/v[n], {n,z-1}] (* A203478 *)
Table[v[n]*v[n+2]/(2*v[n+1]^2), {n,22}] (* A164051 *)
(* Second program *)
Table[Product[(2^j^2)*QPochhammer[-1/2^j,2,j], {j,0,n-1}], {n,20}] (* G. C. Greubel, Aug 28 2023 *)
-
a(n)=prod(i=0,n-2,prod(j=i+1,n-1,2^i+2^j)) \\ Charles R Greathouse IV, Feb 16 2021
-
[product(product(2^j + 2^k for k in range(j)) for j in range(n)) for n in range(1,21)] # G. C. Greubel, Aug 28 2023
A203480
a(n) = v(n+1)/v(n), where v = A203479.
Original entry on oeis.org
4, 80, 6336, 1901824, 2167925760, 9505110118400, 162323441859870720, 10902076148767162433536, 2898720791385603198124032000, 3064112360434477703904869089280000, 12909951234577776926559241120412860416000
Offset: 1
-
[(&*[2^j +2^(n+1) -2: j in [1..n]]): n in [1..20]]; // G. C. Greubel, Aug 28 2023
-
(* First program *)
f[j_]:= 2^j - 1; z = 15;
v[n_]:= Product[Product[f[k] + f[j], {j,k-1}], {k,2,n}]
Table[v[n], {n,z}] (* A203479 *)
Table[v[n+1]/v[n], {n,z-1}] (* A203480 *)
Table[v[n+1]/(4*v[n]), {n,z-1}] (* A203481 *)
(* Second program *)
Table[Product[2^(n+1) +2^k -2, {k,n}], {n,20}] (* G. C. Greubel, Aug 28 2023 *)
-
[product(2^j+2^(n+1)-2 for j in range(1,n+1)) for n in range(1,21)] # G. C. Greubel, Aug 28 2023
A203481
a(n) = v(n+1)/(4*v(n)), where v = A203479.
Original entry on oeis.org
1, 20, 1584, 475456, 541981440, 2376277529600, 40580860464967680, 2725519037191790608384, 724680197846400799531008000, 766028090108619425976217272320000, 3227487808644444231639810280103215104000
Offset: 1
-
[(&*[2^j + 2^(n+1) - 2: j in [1..n]])/4: n in [1..20]]; // G. C. Greubel, Aug 28 2023
-
(* First program *)
f[j_]:= 2^j - 1; z = 15;
v[n_]:= Product[Product[f[k] + f[j], {j, k-1}], {k, 2, n}]
Table[v[n], {n, z}] (* A203479 *)
Table[v[n+1]/v[n], {n, z-1}] (* A203480 *)
Table[v[n+1]/(4*v[n]), {n, z-1}] (* A203481 *)
(* Second program *)
Table[Product[2^(n+1) +2^k -2, {k,n}]/4, {n,20}] (* G. C. Greubel, Aug 28 2023 *)
-
[product(2^j+2^(n+1)-2 for j in range(1,n+1))/4 for n in range(1,21)] # G. C. Greubel, Aug 28 2023
Original entry on oeis.org
1, 3, 84, 273000, 3046699656000, 5996663814749677445376000, 160771799453017261771769947549079938007040000, 6351968589735888467306807912855132014808202373395298410963148996608000000
Offset: 1
-
BarnesG:= func< n | (&*[Factorial(k): k in [0..n-2]]) >;
A203510:= func< n | n eq 1 select 1 else (&*[(&*[Factorial(j) + Factorial(k): k in [1..j-1]]): j in [2..n]])/BarnesG(n+1) >;
[A203510(n): n in [1..13]]; // G. C. Greubel, Feb 24 2024
-
f[j_] := j!; z = 10;
v[n_] := Product[Product[f[k] + f[j], {j, 1, k - 1}], {k, 2, n}]
d[n_] := Product[(i - 1)!, {i, 1, n}] (* A000178 *)
Table[v[n], {n, 1, z}] (* A203482 *)
Table[v[n + 1]/v[n], {n, 1, z - 1}] (* A203483 *)
Table[v[n]/d[n], {n, 1, 10}] (* this sequence *)
Table[Product[j! + k!, {j, 1, n}, {k, 1, j-1}] / BarnesG[n+1], {n, 1, 10}] (* Vaclav Kotesovec, Nov 20 2023 *)
-
def BarnesG(n): return product(factorial(j) for j in range(1,n-1))
def A203510(n): return product(product(factorial(j)+factorial(k) for k in range(1,j)) for j in range(1,n+1))/BarnesG(n+1)
[A203510(n) for n in range(1,14)] # G. C. Greubel, Feb 24 2024
A203514
Vandermonde sequence using x^2 + xy + y^2 applied to (1,3,5,...,2n-1).
Original entry on oeis.org
1, 13, 19747, 9692360769, 3007399210929125649, 974293562642242789006882422237, 492054106680311213790793284550789224583937187, 540918035328864126384298694506545526610971072745364246025968225
Offset: 1
-
f[j_] := 2 j - 1; z = 12;
v[n_] := Product[Product[f[j]^2 + f[j] f[k] + f[k]^2,
{j, 1, k - 1}], {k, 2, n}]
Table[v[n], {n, 1, z}] (* A203514 *)
Table[v[n + 1]/v[n], {n, 1, z}] (* A203515 *)
A203519
a(n) = v(n+1)/v(n), where v=A203518.
Original entry on oeis.org
3, 20, 336, 12870, 1270080, 311323584, 197399802600, 321880885724160, 1365311591573529600, 15068868587132753685600, 434169705562891299584593920, 32678748925653999616045678080000, 6431834564578466234122576826339121600
Offset: 1
-
f[j_] := Fibonacci[j + 1]; z = 15;
v[n_] := Product[Product[f[k] + f[j], {j, 1, k - 1}], {k, 2, n}]
d[n_] := Product[(i - 1)!, {i, 1, n}] (* A000178(n-1) *)
Table[v[n], {n, 1, z}] (* A203518 *)
Table[v[n + 1]/v[n], {n, 1, z - 1}] (* A203519 *)
Table[v[n]/d[n], {n, 1, 20}] (* A203520 *)
Original entry on oeis.org
1, 3, 30, 1680, 900900, 9535125600, 4122929827336320, 161481256755920962660800, 1289130207153926967849156327590400, 4850265693548396005370498087328884780717568000, 20141097979706537636828034511787661382412368790843921121216000
Offset: 1
-
f[j_] := Fibonacci[j + 1]; z = 15;
v[n_] := Product[Product[f[k] + f[j], {j, 1, k - 1}], {k, 2, n}]
d[n_] := Product[(i - 1)!, {i, 1, n}] (* A000178 *)
Table[v[n], {n, 1, z}] (* A203518 *)
Table[v[n + 1]/v[n], {n, 1, z - 1}] (* A203519 *)
Table[v[n]/d[n], {n, 1, 20}] (* A203520 *)
A203522
a(n) = v(n+1)/v(n), where v = A203521.
Original entry on oeis.org
1, 5, 56, 1080, 52416, 2073600, 168537600, 9963233280, 1122750720000, 234209649623040, 22056529195008000, 5634088861040640000, 1027073825689514803200, 132063784535221862400000, 27917533370401003929600000
Offset: 0
-
f:= proc(n) local i; mul(ithprime(i)+ithprime(n+1),i=1..n) end proc:
map(f, [$1..30]); # Robert Israel, Jan 28 2025
-
f[j_] := Prime[j]; z = 15;
v[n_] := Product[Product[f[k] + f[j], {j, 1, k - 1}], {k, 2, n}]
d[n_] := Product[(i - 1)!, {i, 1, n}] (* A000178 *)
Table[v[n], {n, 1, z}] (* A203521 *)
Table[v[n + 1]/v[n], {n, 1, z - 1}] (* A203522 *)
Table[v[n]/d[n], {n, 1, 20}] (* A203523 *)
Comments