A218737
a(n) = (34^n - 1)/33.
Original entry on oeis.org
0, 1, 35, 1191, 40495, 1376831, 46812255, 1591616671, 54114966815, 1839908871711, 62556901638175, 2126934655697951, 72315778293730335, 2458736461986831391, 83597039707552267295, 2842299350056777088031, 96638177901930420993055, 3285698048665634313763871
Offset: 0
Cf. similar sequences of the form (k^n-1)/(k-1):
A000225,
A003462,
A002450,
A003463,
A003464,
A023000,
A023001,
A002452,
A002275,
A016123,
A016125,
A091030,
A135519,
A135518,
A131865,
A091045,
A218721,
A218722,
A064108,
A218724-
A218734,
A132469,
A218736-
A218753,
A133853,
A094028,
A218723.
-
[n le 2 select n-1 else 35*Self(n-1)-34*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 07 2012
-
LinearRecurrence[{35, -34}, {0, 1}, 30] (* Vincenzo Librandi, Nov 07 2012 *)
-
A218737(n):=(34^n-1)/33$
makelist(A218737(n),n,0,30); /* Martin Ettl, Nov 07 2012 */
-
A218737(n)=34^n\33
A218738
a(n) = (35^n - 1)/34.
Original entry on oeis.org
0, 1, 36, 1261, 44136, 1544761, 54066636, 1892332261, 66231629136, 2318107019761, 81133745691636, 2839681099207261, 99388838472254136, 3478609346528894761, 121751327128511316636, 4261296449497896082261, 149145375732426362879136, 5220088150634922700769761
Offset: 0
Cf. similar sequences of the form (k^n-1)/(k-1):
A000225,
A003462,
A002450,
A003463,
A003464,
A023000,
A023001,
A002452,
A002275,
A016123,
A016125,
A091030,
A135519,
A135518,
A131865,
A091045,
A218721,
A218722,
A064108,
A218724-
A218734,
A132469,
A218736-
A218753,
A133853,
A094028,
A218723.
-
[n le 2 select n-1 else 36*Self(n-1)-35*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 07 2012
-
LinearRecurrence[{36, -35}, {0, 1}, 30] (* Vincenzo Librandi, Nov 07 2012 *)
-
A218738(n):=(35^n-1)/34$
makelist(A218738(n),n,0,30); /* Martin Ettl, Nov 07 2012 */
-
A218738(n)=35^n\34
A218745
a(n) = (42^n - 1)/41.
Original entry on oeis.org
0, 1, 43, 1807, 75895, 3187591, 133878823, 5622910567, 236162243815, 9918814240231, 416590198089703, 17496788319767527, 734865109430236135, 30864334596069917671, 1296302053034936542183, 54444686227467334771687, 2286676821553628060410855, 96040426505252378537255911
Offset: 0
Cf. similar sequences of the form (k^n-1)/(k-1):
A000225,
A003462,
A002450,
A003463,
A003464,
A023000,
A023001,
A002452,
A002275,
A016123,
A016125,
A091030,
A135519,
A135518,
A131865,
A091045,
A218721,
A218722,
A064108,
A218724-
A218734,
A132469,
A218736-
A218753,
A133853,
A094028,
A218723.
-
[n le 2 select n-1 else 43*Self(n-1) - 42*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 07 2012
-
LinearRecurrence[{43, -42}, {0, 1}, 30] (* Vincenzo Librandi, Nov 07 2012 *)
(42^Range[0,20]-1)/41 (* Harvey P. Dale, May 08 2024 *)
-
A218745(n):=(42^n-1)/41$
makelist(A218745(n),n,0,30); /* Martin Ettl, Nov 07 2012 */
-
A218745(n)=42^n\41
A261544
a(n) = Sum_{k=0..n} 1000^k.
Original entry on oeis.org
1, 1001, 1001001, 1001001001, 1001001001001, 1001001001001001, 1001001001001001001, 1001001001001001001001, 1001001001001001001001001, 1001001001001001001001001001, 1001001001001001001001001001001, 1001001001001001001001001001001001
Offset: 0
From _Bruno Berselli_, Aug 25 2015: (Start)
a(n) is the binary representation of A023001
-------------------------------------------------
1 ........................................... 1
1001 ........................................ 9
1001001 ..................................... 73
1001001001 ................................ 585
1001001001001 ............................ 4681
1001001001001001 ........................ 37449
1001001001001001001 .................... 299593
1001001001001001001001 ................ 2396745
1001001001001001001001001 ............ 19173961, etc.
(End)
Cf. similar sequences of the form (k^n-1)/(k-1) listed in
A269025.
-
[(1000^(n+1)-1)/999: n in [0..30]]; // Vincenzo Librandi, Aug 24 2015
-
Table[(1000^(n + 1) - 1)/999, {n, 0, 15}]
LinearRecurrence[{1001, -1000}, {1, 1001}, 20] (* Vincenzo Librandi, Aug 24 2015 *)
-
Vec(1 / ((x-1)*(1000*x-1)) + O(x^20)) \\ Colin Barker, Aug 24 2015
A344822
Numbers m with decimal expansion (d_1, ..., d_k) such that d_i = m * i mod 10 for i = 1..k.
Original entry on oeis.org
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 505, 50505, 246802, 482604, 628406, 864208, 5050505, 505050505, 12345678901, 24680246802, 36925814703, 48260482604, 50505050505, 62840628406, 74185296307, 86420864208, 98765432109, 5050505050505, 505050505050505, 2468024680246802
Offset: 1
- 4 * 1 = 4 mod 10,
- 4 * 2 = 8 mod 10,
- 4 * 3 = 2 mod 10,
- 4 * 4 = 6 mod 10,
- 4 * 5 = 0 mod 10,
- 4 * 6 = 4 mod 10,
so 482604 is a term.
-
is(n) = { my (d=digits(n)); for (k=1, #d, if (d[k] != (n*k)%10, return (0))); return (1) }
-
See Links section.
-
def ok(m):
d = str(m)
return all(d[i-1] == str((m*i)%10) for i in range(1, len(d)+1))
print(list(filter(ok, range(10**6)))) # Michael S. Branicky, May 29 2021
-
def auptod(maxdigits):
alst = [0]
for k in range(1, maxdigits+1):
for d1 in range(1, 10):
d = [(d1*i)%10 for i in range(1, k+1)]
if d1 == d[-1]: alst.append(int("".join(map(str, d))))
return alst
print(auptod(16)) # Michael S. Branicky, May 29 2021
A098610
a(n) = 10^n + (-1)^n.
Original entry on oeis.org
2, 9, 101, 999, 10001, 99999, 1000001, 9999999, 100000001, 999999999, 10000000001, 99999999999, 1000000000001, 9999999999999, 100000000000001, 999999999999999, 10000000000000001, 99999999999999999, 1000000000000000001, 9999999999999999999, 100000000000000000001
Offset: 0
-
[10^n+(-1)^n: n in [0..20]]; // Vincenzo Librandi, Sep 23 2016
-
Total/@Partition[Riffle[10^Range[0,20],{1,-1}],2] (* or *) Table[10^n+(-1)^n,{n,0,20}] (* Harvey P. Dale, Aug 20 2012 *)
A218727
a(n) = (24^n - 1)/23.
Original entry on oeis.org
0, 1, 25, 601, 14425, 346201, 8308825, 199411801, 4785883225, 114861197401, 2756668737625, 66160049703001, 1587841192872025, 38108188628928601, 914596527094286425, 21950316650262874201, 526807599606308980825, 12643382390551415539801, 303441177373233972955225
Offset: 0
Cf. similar sequences of the form (k^n-1)/(k-1):
A000225,
A003462,
A002450,
A003463,
A003464,
A023000,
A023001,
A002452,
A002275,
A016123,
A016125,
A091030,
A135519,
A135518,
A131865,
A091045,
A218721,
A218722,
A064108,
A218724-
A218734,
A132469,
A218736-
A218753,
A133853,
A094028,
A218723.
-
[n le 2 select n-1 else 25*Self(n-1)-24*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 07 2012
-
LinearRecurrence[{25, -24}, {0, 1}, 30] (* Vincenzo Librandi, Nov 07 2012 *)
-
A218727(n):=(24^n-1)/23$
makelist(A218727(n),n,0,30); /* Martin Ettl, Nov 07 2012 */
-
A218727(n)=24^n\23
A218729
a(n) = (26^n - 1)/25.
Original entry on oeis.org
0, 1, 27, 703, 18279, 475255, 12356631, 321272407, 8353082583, 217180147159, 5646683826135, 146813779479511, 3817158266467287, 99246114928149463, 2580398988131886039, 67090373691429037015, 1744349715977154962391, 45353092615406029022167, 1179180408000556754576343
Offset: 0
Cf. similar sequences of the form (k^n-1)/(k-1):
A000225,
A003462,
A002450,
A003463,
A003464,
A023000,
A023001,
A002452,
A002275,
A016123,
A016125,
A091030,
A135519,
A135518,
A131865,
A091045,
A218721,
A218722,
A064108,
A218724-
A218734,
A132469,
A218736-
A218753,
A133853,
A094028,
A218723.
-
[n le 2 select n-1 else 27*Self(n-1)-26*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 07 2012
-
LinearRecurrence[{27, -26}, {0, 1}, 30] (* Vincenzo Librandi, Nov 07 2012 *)
-
A218729(n):=(26^n-1)/25$
makelist(A218729(n),n,0,30); /* Martin Ettl, Nov 07 2012 */
-
A218729(n)=26^n\25
A218730
a(n) = (27^n - 1)/26.
Original entry on oeis.org
0, 1, 28, 757, 20440, 551881, 14900788, 402321277, 10862674480, 293292210961, 7918889695948, 213810021790597, 5772870588346120, 155867505885345241, 4208422658904321508, 113627411790416680717, 3067940118341250379360, 82834383195213760242721, 2236528346270771526553468
Offset: 0
Cf. similar sequences of the form (k^n-1)/(k-1):
A000225,
A003462,
A002450,
A003463,
A003464,
A023000,
A023001,
A002452,
A002275,
A016123,
A016125,
A091030,
A135519,
A135518,
A131865,
A091045,
A218721,
A218722,
A064108,
A218724-
A218734,
A132469,
A218736-
A218753,
A133853,
A094028,
A218723.
-
[n le 2 select n-1 else 28*Self(n-1)-27*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 07 2012
-
LinearRecurrence[{28, -27}, {0, 1}, 30] (* Vincenzo Librandi, Nov 07 2012 *)
-
A218730(n):=(27^n-1)/26$
makelist(A218730(n),n,0,30); /* Martin Ettl, Nov 07 2012 */
-
a(n)=27^n\26
A218731
a(n) = (28^n - 1)/27.
Original entry on oeis.org
0, 1, 29, 813, 22765, 637421, 17847789, 499738093, 13992666605, 391794664941, 10970250618349, 307167017313773, 8600676484785645, 240818941573998061, 6742930364071945709, 188802050194014479853, 5286457405432405435885, 148020807352107352204781, 4144582605859005861733869
Offset: 0
Cf. similar sequences of the form (k^n-1)/(k-1):
A000225,
A003462,
A002450,
A003463,
A003464,
A023000,
A023001,
A002452,
A002275,
A016123,
A016125,
A091030,
A135519,
A135518,
A131865,
A091045,
A218721,
A218722,
A064108,
A218724-
A218734,
A132469,
A218736-
A218753,
A133853,
A094028,
A218723.
-
[n le 2 select n-1 else 29*Self(n-1)-28*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 07 2012
-
LinearRecurrence[{29, -28}, {0, 1}, 30] (* Vincenzo Librandi, Nov 07 2012 *)
-
A218731(n):=(28^n-1)/27$
makelist(A218731(n),n,0,30); /* Martin Ettl, Nov 07 2012 */
-
A218731(n)=28^n\27
Comments