A210676
a(0)=1; thereafter a(n) = -3*Sum_{k=1..n} binomial(2n,2k)*a(n-k).
Original entry on oeis.org
1, -3, 51, -2163, 171231, -21785223, 4065116811, -1045879150683, 354837765112791, -153492920593758543, 82453488412268175171, -53850296379425229208803, 42020794900180632536559951, -38611325264740403135096141463, 41264215393801752999038147563131, -50749285521783354479522581233836523
Offset: 0
-
f:=proc(n,k) option remember; local i;
if n=0 then 1
else k*add(binomial(2*n,2*i)*f(n-i,k),i=1..floor(n)); fi; end;
g:=k->[seq(f(n,k),n=0..40)];
g(-3);
-
nmax=20; Table[(CoefficientList[Series[1/(3*Cosh[x]-2), {x, 0, 2*nmax}], x] * Range[0, 2*nmax]!)[[2*n+1]], {n,0,nmax}] (* Vaclav Kotesovec, Mar 14 2015 *)
A243665
Number of 4-packed words of degree n.
Original entry on oeis.org
1, 1, 71, 35641, 65782211, 323213457781, 3482943541940351, 72319852680213967921, 2637329566270689344838491, 157544683317273333844553610061, 14601235867276343036803577794300631, 2010110081536549910297353731858747088201, 396647963186245408341324212422008625649510771
Offset: 0
-
1/(2-(cos(t^(1/4))+cosh(t^(1/4)))/2): series(%,t,14): seq((4*n)!*coeff(%,t,n),n=0..12); # Peter Luschny, Jul 07 2015
-
g[t_] := (Cos[t] + Cosh[t])/2;
a[n_] := (4n)! SeriesCoefficient[1/(2 - g[t^(1/4)]), {t, 0, n}];
Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Jul 14 2018, after Peter Luschny *)
-
seq(n)={my(a=vector(n+1)); a[1]=1; for(n=1, n, a[1+n]=sum(k=1, n, binomial(4*n, 4*k) * a[1+n-k])); a} \\ Andrew Howroyd, Jan 21 2020
-
# uses[CEN from A243664]
A243665 = lambda len: CEN(4,len)
A243665(13) # Peter Luschny, Jul 06 2015
-
# Alternatively:
def PackedWords4(n):
shapes = ([x*4 for x in p] for p in Partitions(n))
return sum(factorial(len(s))*SetPartitions(sum(s), s).cardinality() for s in shapes)
[PackedWords4(n) for n in (0..12)] # Peter Luschny, Aug 02 2015
A210674
a(0)=1; thereafter a(n) = 3*Sum_{k=1..n} binomial(2n,2k)*a(n-k).
Original entry on oeis.org
1, 3, 57, 2703, 239277, 34041603, 7103141697, 2043564786903, 775293596155317, 375019773885750603, 225270492555606688137, 164517775480287009524703, 143555042043378357951428157, 147502150365016885913874781203, 176273363579960990244526939543377, 242422256082395157286909073370272103
Offset: 0
-
f:=proc(n,k) option remember; local i;
if n=0 then 1
else k*add(binomial(2*n,2*i)*f(n-i,k),i=1..floor(n)); fi; end;
g:=k->[seq(f(n,k),n=0..40)];
g(3);
-
nmax=20; Table[(CoefficientList[Series[1/(4-3*Cosh[x]), {x, 0, 2*nmax}], x] * Range[0, 2*nmax]!)[[2*n+1]], {n,0,nmax}] (* Vaclav Kotesovec, Mar 14 2015 *)
A243666
Number of 5-packed words of degree n.
Original entry on oeis.org
1, 1, 253, 762763, 11872636325, 633287284180541, 90604069581412784683, 29529277377602939454694793, 19507327717978242212109900308085, 23927488379043876045061553841299192011, 50897056444296458534155179226333868898628813, 177758773838827813873239281786548960244155096117573
Offset: 0
-
a := (5+sqrt(5))/4: b := (5-sqrt(5))/4: g := t -> (exp(t)+2*exp(t-a*t)*cos(t*sqrt(b/2))+2*exp(t-b*t)*cos(t*sqrt(a/2)))/5: series(1/(2-g(t)),t,56): seq((5*n)!*(coeff(simplify(%),t,5*n)),n=0..11); # Peter Luschny, Jul 07 2015
-
b = (5 - Sqrt[5])/4; c = (5 + Sqrt[5])/4;
g[t_] := (Exp[t] + 2*Exp[t - c*t]*Cos[t*Sqrt[b/2]] + 2*Exp[t - b*t]* Cos[t*Sqrt[c/2]])/5;
a[n_] := (5n)! SeriesCoefficient[1/(2 - g[t]), { t, 0, 5 n}] // Simplify;
Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 0, 12}] (* Jean-François Alcover, Jul 14 2018, after Peter Luschny *)
-
seq(n)={my(a=vector(n+1)); a[1]=1; for(n=1, n, a[1+n]=sum(k=1, n, binomial(5*n, 5*k) * a[1+n-k])); a} \\ Andrew Howroyd, Jan 21 2020
-
# uses[CEN from A243664]
A243666 = lambda len: CEN(5,len)
A243666(12) # Peter Luschny, Jul 06 2015
-
# Alternatively:
def PackedWords5(n):
shapes = ([x*5 for x in p] for p in Partitions(n))
return sum(factorial(len(s))*SetPartitions(sum(s), s).cardinality() for s in shapes)
[PackedWords5(n) for n in (0..11)] # Peter Luschny, Aug 02 2015
A327022
Partition triangle read by rows. Number of ordered set partitions of the set {1, 2, ..., 2*n} with all block sizes divisible by 2.
Original entry on oeis.org
1, 1, 1, 6, 1, 30, 90, 1, 56, 70, 1260, 2520, 1, 90, 420, 3780, 9450, 75600, 113400, 1, 132, 990, 924, 8910, 83160, 34650, 332640, 1247400, 6237000, 7484400, 1, 182, 2002, 6006, 18018, 270270, 252252, 630630, 1081080, 15135120, 12612600, 37837800, 189189000, 681080400, 681080400
Offset: 0
Triangle starts (note the subdivisions by ';' (A072233)):
[0] [1]
[1] [1]
[2] [1; 6]
[3] [1; 30; 90]
[4] [1; 56, 70; 1260; 2520]
[5] [1; 90, 420; 3780, 9450; 75600; 113400]
[6] [1; 132, 990, 924; 8910, 83160, 34650; 332640, 1247400; 6237000; 7484400]
.
T(4, 1) = 56 because [6, 2] is the integer partition 2*P(4, 1) in the canonical order and there are 28 set partitions which have the shape [6, 2] (an example is {{1, 3, 4, 5, 6, 8}, {2, 7}}). Finally, since the order of the sets is taken into account, one gets 2!*28 = 56.
-
def GenOrdSetPart(m, n):
shapes = ([x*m for x in p] for p in Partitions(n))
return [factorial(len(s))*SetPartitions(sum(s), s).cardinality() for s in shapes]
def A327022row(n): return GenOrdSetPart(2, n)
for n in (0..6): print(A327022row(n))
A331611
E.g.f.: exp(1 / (2 - cosh(x)) - 1) (even powers only).
Original entry on oeis.org
1, 1, 10, 241, 10585, 732826, 73233205, 9955632961, 1764233731270, 394629336427021, 108652463882802505, 36084903957564392206, 14217903951354603567385, 6554505383225768210009041, 3493988190176442653240091010, 2131975894217009666242489287001
Offset: 0
-
nmax = 15; Table[(CoefficientList[Series[Exp[1/(2 - Cosh[x]) - 1], {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}]
A094088[0] = 1; A094088[n_] := A094088[n] = Sum[Binomial[2 n, 2 k] A094088[n - k], {k, 1, n}]; a[0] = 1; a[n_] := a[n] = Sum[Binomial[2 n - 1, 2 k - 1] A094088[k] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 15}]
A260883
Number of m-shape ordered set partitions, square array read by ascending antidiagonals, A(m, n) for m, n >= 0.
Original entry on oeis.org
1, 1, 1, 1, 1, 3, 1, 1, 3, 9, 1, 1, 7, 13, 35, 1, 1, 21, 121, 75, 161, 1, 1, 71, 1849, 3907, 541, 913, 1, 1, 253, 35641, 426405, 202741, 4683, 6103, 1, 1, 925, 762763, 65782211, 203374081, 15430207, 47293, 47319, 1, 1, 3433, 17190265, 11872636325, 323213457781, 173959321557
Offset: 1
[ n ] [0 1 2 3 4 5 6]
[ m ] -----------------------------------------------------------
[ 0 ] [1, 1, 3, 9, 35, 161, 913] A101880
[ 1 ] [1, 1, 3, 13, 75, 541, 4683] A000670
[ 2 ] [1, 1, 7, 121, 3907, 202741, 15430207] A094088
[ 3 ] [1, 1, 21, 1849, 426405, 203374081, 173959321557] A243664
[ 4 ] [1, 1, 71, 35641, 65782211, 323213457781, 3482943541940351] A243665
A244174
For example the number of ordered set partitions of {1,2,...,9} with sizes in [9], [6,3] and [3,3,3] is 1, 168 and 1680 respectively. Thus A(3,3) = 1849.
Formatted as a triangle:
[1]
[1, 1]
[1, 1, 3]
[1, 1, 3, 9]
[1, 1, 7, 13, 35]
[1, 1, 21, 121, 75, 161]
[1, 1, 71, 1849, 3907, 541, 913]
[1, 1, 253, 35641, 426405, 202741, 4683, 6103]
-
def A260883(m, n):
shapes = ([x*m for x in p] for p in Partitions(n))
return sum(factorial(len(s))*SetPartitions(sum(s), s).cardinality() for s in shapes)
for m in (0..4): print([A260883(m, n) for n in (0..6)])
A326477
Coefficients of polynomials related to ordered set partitions. Triangle read by rows, T_{m}(n, k) for m = 2 and 0 <= k <= n.
Original entry on oeis.org
1, 0, 1, 0, 4, 3, 0, 46, 60, 15, 0, 1114, 1848, 840, 105, 0, 46246, 88770, 54180, 12600, 945, 0, 2933074, 6235548, 4574130, 1469160, 207900, 10395, 0, 263817646, 605964450, 505915410, 199849650, 39729690, 3783780, 135135
Offset: 0
Triangle starts:
[0] [1]
[1] [0, 1]
[2] [0, 4, 3]
[3] [0, 46, 60, 15]
[4] [0, 1114, 1848, 840, 105]
[5] [0, 46246, 88770, 54180, 12600, 945]
[6] [0, 2933074, 6235548, 4574130, 1469160, 207900, 10395]
-
CL := f -> PolynomialTools:-CoefficientList(f, x):
FL := s -> ListTools:-Flatten(s, 1):
StirPochConv := proc(m, n) local P, L; P := proc(m, n) option remember;
`if`(n = 0, 1, add(binomial(m*n, m*k)*P(m, n-k)*x, k=1..n)) end:
L := CL(P(m, n)); CL(expand(add(L[k+1]*pochhammer(x,k)/k!, k=0..n))) end:
FL([seq(StirPochConv(2,n), n = 0..7)]);
-
P[, 0] = 1; P[m, n_] := P[m, n] = Sum[Binomial[m*n, m*k]*P[m, n-k]*x, {k, 1, n}] // Expand;
T[m_][n_] := CoefficientList[P[m, n], x].Table[Pochhammer[x, k]/k!, {k, 0, n}] // CoefficientList[#, x]&;
Table[T[2][n], {n, 0, 7}] // Flatten (* Jean-François Alcover, Jul 21 2019 *)
-
def StirPochConv(m, n):
z = var('z'); R = ZZ[x]
F = [i/m for i in (1..m-1)]
H = hypergeometric([], F, (z/m)^m)
P = R(factorial(m*n)*taylor(exp(x*(H-1)), z, 0, m*n + 1).coefficient(z, m*n))
L = P.list()
S = sum(L[k]*rising_factorial(x,k) for k in (0..n))
return expand(S).list()
for n in (0..6): print(StirPochConv(2, n))
A327034
Expansion of e.g.f. exp(x) / (2 - cosh(x)).
Original entry on oeis.org
1, 1, 2, 4, 14, 46, 242, 1114, 7814, 46246, 405482, 2933074, 30860414, 263817646, 3238391522, 31943268634, 448122565814, 5009616448246, 79063212894362, 987840438629794, 17322647732052014, 239217148602642046, 4614370558369770002, 69790939492563608554
Offset: 0
-
nmax = 23; CoefficientList[Series[Exp[x]/(2 - Cosh[x]), {x, 0, nmax}], x] Range[0, nmax]!
A331978
E.g.f.: -log(2 - cosh(x)) (even powers only).
Original entry on oeis.org
0, 1, 4, 46, 1114, 46246, 2933074, 263817646, 31943268634, 5009616448246, 987840438629794, 239217148602642046, 69790939492563608554, 24143849395162438623046, 9772368696995766705116914, 4575221153658910691872135246, 2453303387149157947685779986874
Offset: 0
-
ptan := proc(n) option remember;
if irem(n, 2) = 0 then 0 else
add(`if`(k=0, 1, binomial(n, k)*ptan(n - k)), k = 0..n-1, 2) fi end:
A331978 := n -> ptan(2*n - 1):
seq(A331978(n), n = 0..16); # Peter Luschny, Jun 06 2022
-
nmax = 16; Table[(CoefficientList[Series[-Log[2 - Cosh[x]], {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}]
Comments