cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 30 results. Next

A210676 a(0)=1; thereafter a(n) = -3*Sum_{k=1..n} binomial(2n,2k)*a(n-k).

Original entry on oeis.org

1, -3, 51, -2163, 171231, -21785223, 4065116811, -1045879150683, 354837765112791, -153492920593758543, 82453488412268175171, -53850296379425229208803, 42020794900180632536559951, -38611325264740403135096141463, 41264215393801752999038147563131, -50749285521783354479522581233836523
Offset: 0

Views

Author

N. J. A. Sloane, Mar 28 2012

Keywords

Comments

Consider the sequence defined by a(0) = 1; thereafter a(n) = c*Sum_{k=1..n} binomial(2n,2k)*a(n-k). For c = -3, -2, -1, 1, 2, 3, 4 this is A210676, A210657, A028296, A094088, A210672, A210674, A249939.
Exp( Sum_{n >= 1} a(n)*x^n/n) is the o.g.f. for A255926. - Peter Bala, Mar 13 2015
In general, for c<>0 is e.g.f. = 1/(c+1-c*cosh(x)) (even coefficients). For c > 0 is a(n) ~ 2 * (2*n)! / (sqrt(2*c+1) * (arccosh((c+1)/c))^(2*n+1)). For c < 0 is a(n) ~ (-1)^n * (2*n)! / (sqrt(-2*c-1) * 2^(2*n) * arccos(sqrt((2*c + 1) / (2*c)))^(2*n+1)). - Vaclav Kotesovec, Mar 14 2015

Crossrefs

Programs

  • Maple
    f:=proc(n,k) option remember;  local i;
    if n=0 then 1
    else k*add(binomial(2*n,2*i)*f(n-i,k),i=1..floor(n)); fi; end;
    g:=k->[seq(f(n,k),n=0..40)];
    g(-3);
  • Mathematica
    nmax=20; Table[(CoefficientList[Series[1/(3*Cosh[x]-2), {x, 0, 2*nmax}], x] * Range[0, 2*nmax]!)[[2*n+1]], {n,0,nmax}] (* Vaclav Kotesovec, Mar 14 2015 *)

Formula

E.g.f.: 1/(3*cosh(x)-2) (even coefficients). - Vaclav Kotesovec, Mar 14 2015
a(n) ~ (-1)^n * (2*n)! / (sqrt(5) * 2^(2*n) * (arccos(sqrt(5/6)))^(2*n+1)). - Vaclav Kotesovec, Mar 14 2015

A243665 Number of 4-packed words of degree n.

Original entry on oeis.org

1, 1, 71, 35641, 65782211, 323213457781, 3482943541940351, 72319852680213967921, 2637329566270689344838491, 157544683317273333844553610061, 14601235867276343036803577794300631, 2010110081536549910297353731858747088201, 396647963186245408341324212422008625649510771
Offset: 0

Views

Author

N. J. A. Sloane, Jun 14 2014

Keywords

Comments

See Novelli-Thibon (2014) for precise definition.

Crossrefs

Cf. A011782, A000670, A094088, A243664, A243665, A243666 for k-packed words of degree n for 0<=k<=5.

Programs

  • Maple
    1/(2-(cos(t^(1/4))+cosh(t^(1/4)))/2): series(%,t,14): seq((4*n)!*coeff(%,t,n),n=0..12); # Peter Luschny, Jul 07 2015
  • Mathematica
    g[t_] := (Cos[t] + Cosh[t])/2;
    a[n_] := (4n)! SeriesCoefficient[1/(2 - g[t^(1/4)]), {t, 0, n}];
    Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Jul 14 2018, after Peter Luschny *)
  • PARI
    seq(n)={my(a=vector(n+1)); a[1]=1; for(n=1, n, a[1+n]=sum(k=1, n, binomial(4*n, 4*k) * a[1+n-k])); a} \\ Andrew Howroyd, Jan 21 2020
  • Sage
    # uses[CEN from A243664]
    A243665 = lambda len: CEN(4,len)
    A243665(13) # Peter Luschny, Jul 06 2015
    
  • Sage
    # Alternatively:
    def PackedWords4(n):
        shapes = ([x*4 for x in p] for p in Partitions(n))
        return sum(factorial(len(s))*SetPartitions(sum(s), s).cardinality() for s in shapes)
    [PackedWords4(n) for n in (0..12)] # Peter Luschny, Aug 02 2015
    

Formula

a(n) = (4*n)! * [t^n] 1/(2-g(t^(1/4))) with g(t) = (cos(t) + cosh(t))/2. - Peter Luschny, Jul 07 2015
a(0) = 1; a(n) = Sum_{k=1..n} binomial(4*n,4*k) * a(n-k). - Ilya Gutkovskiy, Jan 21 2020

Extensions

a(0)=1 prepended, more terms from Peter Luschny, Jul 06 2015

A210674 a(0)=1; thereafter a(n) = 3*Sum_{k=1..n} binomial(2n,2k)*a(n-k).

Original entry on oeis.org

1, 3, 57, 2703, 239277, 34041603, 7103141697, 2043564786903, 775293596155317, 375019773885750603, 225270492555606688137, 164517775480287009524703, 143555042043378357951428157, 147502150365016885913874781203, 176273363579960990244526939543377, 242422256082395157286909073370272103
Offset: 0

Views

Author

N. J. A. Sloane, Mar 28 2012

Keywords

Comments

Consider the sequence defined by a(0) = 1; thereafter a(n) = c*Sum_{k = 1..n} binomial(2n,2k)*a(n-k). For c = -3, -2, -1, 1, 2, 3, 4 this is A210676, A210657, A028296, A094088, A210672, A210674, A249939.
Exp( Sum_{n >= 1} a(n)*x^n/n) is the o.g.f. for A255930. - Peter Bala, Mar 13 2015
In general, for c > 0 is a(n) ~ sqrt(Pi/(2*c+1)) * 2^(2*n+2) * n^(2*n+1/2) / (exp(2*n) * (log((c + 1 + sqrt(2*c+1)) / c))^(2*n+1)) = 2*(2*n)!/(sqrt(2*c+1)*(arccosh((c+1)/c))^(2*n+1)). - Vaclav Kotesovec, Mar 13 2015
For c < 0 is a(n) ~ (-1)^n * (2*n)! / (sqrt(-2*c-1) * 2^(2*n) * arccos(sqrt((2*c + 1)/(2*c)))^(2*n+1)). - Vaclav Kotesovec, Mar 14 2015

Crossrefs

Cf. A210676 (c=-3), A210657 (c=-2), A028296 (c=-1), A094088 (c=1), A210672 (c=2), A249939 (c=4).
Cf. A255930.

Programs

  • Maple
    f:=proc(n,k) option remember;  local i;
    if n=0 then 1
    else k*add(binomial(2*n,2*i)*f(n-i,k),i=1..floor(n)); fi; end;
    g:=k->[seq(f(n,k),n=0..40)];
    g(3);
  • Mathematica
    nmax=20; Table[(CoefficientList[Series[1/(4-3*Cosh[x]), {x, 0, 2*nmax}], x] * Range[0, 2*nmax]!)[[2*n+1]], {n,0,nmax}] (* Vaclav Kotesovec, Mar 14 2015 *)

Formula

a(n) ~ sqrt(Pi/7) * 2^(2*n+2) * n^(2*n+1/2) / (exp(2*n) * (log((4 + sqrt(7)) / 3))^(2*n+1)). - Vaclav Kotesovec, Mar 13 2015
E.g.f.: 1/(4-3*cosh(x)) (even coefficients). - Vaclav Kotesovec, Mar 14 2015

A243666 Number of 5-packed words of degree n.

Original entry on oeis.org

1, 1, 253, 762763, 11872636325, 633287284180541, 90604069581412784683, 29529277377602939454694793, 19507327717978242212109900308085, 23927488379043876045061553841299192011, 50897056444296458534155179226333868898628813, 177758773838827813873239281786548960244155096117573
Offset: 0

Views

Author

N. J. A. Sloane, Jun 14 2014

Keywords

Comments

See Novelli-Thibon (2014) for precise definition.

Crossrefs

Cf. A011782, A000670, A094088, A243664, A243665, A243666 for k-packed words of degree n for 0<=k<=5.

Programs

  • Maple
    a := (5+sqrt(5))/4: b := (5-sqrt(5))/4: g := t -> (exp(t)+2*exp(t-a*t)*cos(t*sqrt(b/2))+2*exp(t-b*t)*cos(t*sqrt(a/2)))/5: series(1/(2-g(t)),t,56): seq((5*n)!*(coeff(simplify(%),t,5*n)),n=0..11); # Peter Luschny, Jul 07 2015
  • Mathematica
    b = (5 - Sqrt[5])/4; c = (5 + Sqrt[5])/4;
    g[t_] := (Exp[t] + 2*Exp[t - c*t]*Cos[t*Sqrt[b/2]] + 2*Exp[t - b*t]* Cos[t*Sqrt[c/2]])/5;
    a[n_] := (5n)! SeriesCoefficient[1/(2 - g[t]), { t, 0, 5 n}] // Simplify;
    Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 0, 12}] (* Jean-François Alcover, Jul 14 2018, after Peter Luschny *)
  • PARI
    seq(n)={my(a=vector(n+1)); a[1]=1; for(n=1, n, a[1+n]=sum(k=1, n, binomial(5*n, 5*k) * a[1+n-k])); a} \\ Andrew Howroyd, Jan 21 2020
  • Sage
    # uses[CEN from A243664]
    A243666 = lambda len: CEN(5,len)
    A243666(12) # Peter Luschny, Jul 06 2015
    
  • Sage
    # Alternatively:
    def PackedWords5(n):
        shapes = ([x*5 for x in p] for p in Partitions(n))
        return sum(factorial(len(s))*SetPartitions(sum(s), s).cardinality() for s in shapes)
    [PackedWords5(n) for n in (0..11)] # Peter Luschny, Aug 02 2015
    

Formula

a(0) = 1; a(n) = Sum_{k=1..n} binomial(5*n,5*k) * a(n-k). - Ilya Gutkovskiy, Jan 21 2020

Extensions

a(0)=1 prepended, more terms from Peter Luschny, Jul 06 2015

A327022 Partition triangle read by rows. Number of ordered set partitions of the set {1, 2, ..., 2*n} with all block sizes divisible by 2.

Original entry on oeis.org

1, 1, 1, 6, 1, 30, 90, 1, 56, 70, 1260, 2520, 1, 90, 420, 3780, 9450, 75600, 113400, 1, 132, 990, 924, 8910, 83160, 34650, 332640, 1247400, 6237000, 7484400, 1, 182, 2002, 6006, 18018, 270270, 252252, 630630, 1081080, 15135120, 12612600, 37837800, 189189000, 681080400, 681080400
Offset: 0

Views

Author

Peter Luschny, Aug 27 2019

Keywords

Comments

We call an irregular triangle T a partition triangle if T(n, k) is defined for n >= 0 and 0 <= k < A000041(n).
T_{m}(n, k) gives the number of ordered set partitions of the set {1, 2, ..., m*n} into sized blocks of shape m*P(n, k), where P(n, k) is the k-th integer partition of n in the 'canonical' order A080577. Here we assume the rows of A080577 to be 0-based and m*[a, b, c,..., h] = [m*a, m*b, m*c,..., m*h]. Here is case m = 2. For instance 2*P(4, .) = [[8], [6, 2], [4, 4], [4, 2, 2], [2, 2, 2, 2]].

Examples

			Triangle starts (note the subdivisions by ';' (A072233)):
[0] [1]
[1] [1]
[2] [1;   6]
[3] [1;  30;  90]
[4] [1;  56,  70; 1260; 2520]
[5] [1;  90, 420; 3780, 9450; 75600; 113400]
[6] [1; 132, 990,  924; 8910, 83160,  34650; 332640, 1247400; 6237000; 7484400]
.
T(4, 1) = 56 because [6, 2] is the integer partition 2*P(4, 1) in the canonical order and there are 28 set partitions which have the shape [6, 2] (an example is {{1, 3, 4, 5, 6, 8}, {2, 7}}). Finally, since the order of the sets is taken into account, one gets 2!*28 = 56.
		

Crossrefs

Row sums: A094088, alternating row sums: A028296, main diagonal: A000680, central column A281478, by length: A241171.
Cf. A178803 (m=0), A133314 (m=1), this sequence (m=2), A327023 (m=3), A327024 (m=4).

Programs

  • Sage
    def GenOrdSetPart(m, n):
        shapes = ([x*m for x in p] for p in Partitions(n))
        return [factorial(len(s))*SetPartitions(sum(s), s).cardinality() for s in shapes]
    def A327022row(n): return GenOrdSetPart(2, n)
    for n in (0..6): print(A327022row(n))

A331611 E.g.f.: exp(1 / (2 - cosh(x)) - 1) (even powers only).

Original entry on oeis.org

1, 1, 10, 241, 10585, 732826, 73233205, 9955632961, 1764233731270, 394629336427021, 108652463882802505, 36084903957564392206, 14217903951354603567385, 6554505383225768210009041, 3493988190176442653240091010, 2131975894217009666242489287001
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 22 2020

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 15; Table[(CoefficientList[Series[Exp[1/(2 - Cosh[x]) - 1], {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}]
    A094088[0] = 1; A094088[n_] := A094088[n] = Sum[Binomial[2 n, 2 k] A094088[n - k], {k, 1, n}]; a[0] = 1; a[n_] := a[n] = Sum[Binomial[2 n - 1, 2 k - 1] A094088[k] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 15}]

Formula

a(0) = 1; a(n) = Sum_{k=1..n} binomial(2*n-1,2*k-1) * A094088(k) * a(n-k).
a(n) ~ 2^(2*n + 1/4) * exp(1/(2*sqrt(3)*log(2 + sqrt(3))) - 2/3 + sqrt(8*n/log(2 + sqrt(3)))/3^(1/4) - 2*n) * n^(2*n - 1/4) / (3^(1/8) * log(2 + sqrt(3))^(2*n + 1/4)). - Vaclav Kotesovec, Jan 26 2020

A260883 Number of m-shape ordered set partitions, square array read by ascending antidiagonals, A(m, n) for m, n >= 0.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 1, 3, 9, 1, 1, 7, 13, 35, 1, 1, 21, 121, 75, 161, 1, 1, 71, 1849, 3907, 541, 913, 1, 1, 253, 35641, 426405, 202741, 4683, 6103, 1, 1, 925, 762763, 65782211, 203374081, 15430207, 47293, 47319, 1, 1, 3433, 17190265, 11872636325, 323213457781, 173959321557
Offset: 1

Views

Author

Peter Luschny, Aug 02 2015

Keywords

Comments

A set partition of m-shape is a partition of a set with cardinality m*n for some n >= 0 such that the sizes of the blocks are m times the parts of the integer partitions of n. It is ordered if the positions of the blocks are taken into account.
If m = 0, all possible sizes are zero. Thus the number of ordered set partitions of 0-shape is the number of ordered partitions of n (partition numbers A101880).
If m = 1, the set is {1, 2, ..., n} and the set of all possible sizes are the integer partitions of n. Thus the number of ordered set partitions of 1-shape is a Fubini number (sequence A000670).
If m = 2, the set is {1, 2, ..., 2n} and the number of ordered set partitions of 2-shape is also the number of 2-packed words of degree n (sequence A094088).

Examples

			[ n ] [0  1   2      3         4            5                  6]
[ m ] -----------------------------------------------------------
[ 0 ] [1, 1,  3,     9,       35,          161,              913]  A101880
[ 1 ] [1, 1,  3,    13,       75,          541,             4683]  A000670
[ 2 ] [1, 1,  7,   121,     3907,       202741,         15430207]  A094088
[ 3 ] [1, 1, 21,  1849,   426405,    203374081,     173959321557]  A243664
[ 4 ] [1, 1, 71, 35641, 65782211, 323213457781, 3482943541940351]  A243665
        A244174
For example the number of ordered set partitions of {1,2,...,9} with sizes in [9], [6,3] and [3,3,3] is 1, 168 and 1680 respectively. Thus A(3,3) = 1849.
Formatted as a triangle:
[1]
[1, 1]
[1, 1, 3]
[1, 1, 3, 9]
[1, 1, 7, 13, 35]
[1, 1, 21, 121, 75, 161]
[1, 1, 71, 1849, 3907, 541, 913]
[1, 1, 253, 35641, 426405, 202741, 4683, 6103]
		

Crossrefs

Programs

  • Sage
    def A260883(m, n):
        shapes = ([x*m for x in p] for p in Partitions(n))
        return sum(factorial(len(s))*SetPartitions(sum(s), s).cardinality() for s in shapes)
    for m in (0..4): print([A260883(m, n) for n in (0..6)])

Formula

From Petros Hadjicostas, Aug 02 2019: (Start)
Conjecture: For n >= 0, let P be the set of all possible lists (a_1, ..., a_n) of nonnegative integers such that a_1*1 + a_2*2 + ... + a_n*n = n. Consider terms of the form multinomial(n*m, m*[1,..., 1, 2,..., 2,..., n,..., n]) * multinomial(a_1 + ... + a_n, [a_1,..., a_n]), where in the list [1,..., 1, 2,..., 2,..., n,..., n] the number 1 occurs a_1 times, 2 occurs a_2 times, ..., and n occurs a_n times. (Here a_n = 0 or 1.) Summing these terms over P we get A(m, n) provided m >= 1. (End)

A326477 Coefficients of polynomials related to ordered set partitions. Triangle read by rows, T_{m}(n, k) for m = 2 and 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 4, 3, 0, 46, 60, 15, 0, 1114, 1848, 840, 105, 0, 46246, 88770, 54180, 12600, 945, 0, 2933074, 6235548, 4574130, 1469160, 207900, 10395, 0, 263817646, 605964450, 505915410, 199849650, 39729690, 3783780, 135135
Offset: 0

Views

Author

Peter Luschny, Jul 08 2019

Keywords

Examples

			Triangle starts:
[0] [1]
[1] [0, 1]
[2] [0, 4, 3]
[3] [0, 46, 60, 15]
[4] [0, 1114, 1848, 840, 105]
[5] [0, 46246, 88770, 54180, 12600, 945]
[6] [0, 2933074, 6235548, 4574130, 1469160, 207900, 10395]
		

Crossrefs

Row sums A094088. Alternating row sums A153881 starting at 0.
Main diagonal A001147. Associated set partitions A241171.
A129062 (m=1, associated with A131689), this sequence (m=2), A326587 (m=3, associated with A278073), A326585 (m=4, associated with A278074).

Programs

  • Maple
    CL := f -> PolynomialTools:-CoefficientList(f, x):
    FL := s -> ListTools:-Flatten(s, 1):
    StirPochConv := proc(m, n) local P, L; P := proc(m, n) option remember;
    `if`(n = 0, 1, add(binomial(m*n, m*k)*P(m, n-k)*x, k=1..n)) end:
    L := CL(P(m, n)); CL(expand(add(L[k+1]*pochhammer(x,k)/k!, k=0..n))) end:
    FL([seq(StirPochConv(2,n), n = 0..7)]);
  • Mathematica
    P[, 0] = 1; P[m, n_] := P[m, n] = Sum[Binomial[m*n, m*k]*P[m, n-k]*x, {k, 1, n}] // Expand;
    T[m_][n_] := CoefficientList[P[m, n], x].Table[Pochhammer[x, k]/k!, {k, 0, n}] // CoefficientList[#, x]&;
    Table[T[2][n], {n, 0, 7}] // Flatten (* Jean-François Alcover, Jul 21 2019 *)
  • Sage
    def StirPochConv(m, n):
        z = var('z'); R = ZZ[x]
        F = [i/m for i in (1..m-1)]
        H = hypergeometric([], F, (z/m)^m)
        P = R(factorial(m*n)*taylor(exp(x*(H-1)), z, 0, m*n + 1).coefficient(z, m*n))
        L = P.list()
        S = sum(L[k]*rising_factorial(x,k) for k in (0..n))
        return expand(S).list()
    for n in (0..6): print(StirPochConv(2, n))

Formula

For m >= 1 let P(m,0) = 1 and P(m, n) = Sum_{k=1..n} binomial(m*n, m*k)*P(m, n-k)*x for n > 0. Then T_{m}(n, k) = Sum_{k=0..n} ([x^k]P(m, n))*rf(x,k)/k! where rf(x,k) are the rising factorial powers. T(n, k) = T_{2}(n, k).

A327034 Expansion of e.g.f. exp(x) / (2 - cosh(x)).

Original entry on oeis.org

1, 1, 2, 4, 14, 46, 242, 1114, 7814, 46246, 405482, 2933074, 30860414, 263817646, 3238391522, 31943268634, 448122565814, 5009616448246, 79063212894362, 987840438629794, 17322647732052014, 239217148602642046, 4614370558369770002, 69790939492563608554
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 28 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 23; CoefficientList[Series[Exp[x]/(2 - Cosh[x]), {x, 0, nmax}], x] Range[0, nmax]!

Formula

a(0) = 1; a(n) = Sum_{k=1..n} (-1)^k * binomial(n,k) * (2^(k - 1) - 2) * a(n-k).
a(n) ~ n! * (7 + 4*sqrt(3) + (-1)^n) / ((3+2*sqrt(3)) * (log(2+sqrt(3)))^(n+1)). - Vaclav Kotesovec, Dec 03 2019

A331978 E.g.f.: -log(2 - cosh(x)) (even powers only).

Original entry on oeis.org

0, 1, 4, 46, 1114, 46246, 2933074, 263817646, 31943268634, 5009616448246, 987840438629794, 239217148602642046, 69790939492563608554, 24143849395162438623046, 9772368696995766705116914, 4575221153658910691872135246, 2453303387149157947685779986874
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 03 2020

Keywords

Crossrefs

Programs

  • Maple
    ptan := proc(n) option remember;
        if irem(n, 2) = 0 then 0 else
        add(`if`(k=0, 1, binomial(n, k)*ptan(n - k)), k = 0..n-1, 2) fi end:
    A331978 := n -> ptan(2*n - 1):
    seq(A331978(n), n = 0..16);  # Peter Luschny, Jun 06 2022
  • Mathematica
    nmax = 16; Table[(CoefficientList[Series[-Log[2 - Cosh[x]], {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}]

Formula

a(0) = 0; a(n) = A094088(n) - (1/n) * Sum_{k=1..n-1} binomial(2*n,2*k) * A094088(n-k) * k * a(k).
a(n) ~ (2*n)! / (n * log(2 + sqrt(3))^(2*n)). - Vaclav Kotesovec, Feb 07 2020
Previous Showing 11-20 of 30 results. Next