A094088
E.g.f. 1/(2-cosh(x)) (even coefficients).
Original entry on oeis.org
1, 1, 7, 121, 3907, 202741, 15430207, 1619195761, 224061282907, 39531606447181, 8661323866026007, 2307185279184885001, 734307168916191403507, 275199311597682485597221, 119956934012963778952439407
Offset: 0
-
f:=proc(n,k) option remember; local i;
if n=0 then 1
else k*add(binomial(2*n,2*i)*f(n-i,k),i=1..floor(n)); fi; end;
g:=k->[seq(f(n,k),n=0..40)];g(1); # N. J. A. Sloane, Mar 28 2012
-
nn=30;Select[Range[0,nn]!CoefficientList[Series[1/(2-Cosh[x]),{x,0,nn}],x],#>0&] (* Geoffrey Critzer, Dec 03 2012 *)
a[0]=1; a[n_] := Sum[1/2*(1+(-1)^(2*n))*Sum[((-1)^(k-j)*Binomial[k, j]*Sum[(j-2*i )^(2*n)*Binomial[j, i], {i, 0, j}])/2^j, {j, 1, k}], {k, 1, n}]; Table[a[n], {n, 0, 14}] (* Jean-François Alcover, Apr 03 2015, after Vladimir Kruchinin *)
-
a(n):=b(2*n+2);
b(n):=sum(((sum(((sum((j-2*i)^n*binomial(j,i),i,0,j))*(-1)^(k-j)*binomial(k,j))/2^(j),j,1,k))*((-1)^n+1))/2,k,1,n/2); /* Vladimir Kruchinin, Apr 23 2011 */
-
a(n):=sum(sum((i-k)^(2*n)*binomial(2*k,i)*(-1)^(i),i,0,k-1)/(2^(k-1)),k,1,2*n); /* Vladimir Kruchinin, Oct 05 2012 */
-
a(n) = if (n == 0, 1, sum(k=1, n, binomial(2*n, 2*n-2*k)*a(n-k)));
-
def A094088(n) :
@CachedFunction
def intern(n) :
if n == 0 : return 1
if n % 2 != 0 : return 0
return add(intern(k)*binomial(n,k) for k in range(n)[::2])
return intern(2*n)
[A094088(n) for n in (0..14)] # Peter Luschny, Jul 14 2012
A243664
Number of 3-packed words of degree n.
Original entry on oeis.org
1, 1, 21, 1849, 426405, 203374081, 173959321557, 242527666641289, 514557294036701349, 1577689559404884503761, 6714435826042791310638741, 38401291553086405072860452569, 287412720357301174793668207559205, 2753382861926383584939774967275568801
Offset: 0
-
g := t -> (exp(t)+2*exp(-t/2)*cos(sqrt(3)*t/2))/3: series(1/(2-g(t^(1/3))),t,14): seq(((3*n)!*coeff(%,t,n)),n=0..13); # Peter Luschny, Jul 07 2015
-
g[t_] := (Exp[t] + 2 Exp[-t/2] Cos[Sqrt[3] t/2])/3;
a[n_] := (3n)! SeriesCoefficient[1/(2 - g[t^(1/3)]), {t, 0, n}];
Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Jul 13 2018, after Peter Luschny *)
-
seq(n)={my(a=vector(n+1)); a[1]=1; for(n=1, n, a[1+n]=sum(k=1, n, binomial(3*n, 3*k) * a[1+n-k])); a} \\ Andrew Howroyd, Jan 21 2020
-
def CEN(m, len):
f, e, r, u = [1], [1], [1], 1
for i in (1..len-1):
f.append(rising_factorial(u, m))
for k in range(i-1, -1, -1):
e[k] = (e[k]*f[i])//f[i-k]
s = sum(e); e.append(s); r.append(s)
u += m
return r
A243664 = lambda len: CEN(3,len)
A243664(14) # Peter Luschny, Jul 06 2015
-
# Alternative
def PackedWords3(n):
shapes = [[x**3 for x in p] for p in Partitions(n)]
return sum([factorial(len(s))*SetPartitions(sum(s), s).cardinality() for s in shapes])
[PackedWords3(n) for n in (0..13)] # Peter Luschny, Aug 02 2015
A243665
Number of 4-packed words of degree n.
Original entry on oeis.org
1, 1, 71, 35641, 65782211, 323213457781, 3482943541940351, 72319852680213967921, 2637329566270689344838491, 157544683317273333844553610061, 14601235867276343036803577794300631, 2010110081536549910297353731858747088201, 396647963186245408341324212422008625649510771
Offset: 0
-
1/(2-(cos(t^(1/4))+cosh(t^(1/4)))/2): series(%,t,14): seq((4*n)!*coeff(%,t,n),n=0..12); # Peter Luschny, Jul 07 2015
-
g[t_] := (Cos[t] + Cosh[t])/2;
a[n_] := (4n)! SeriesCoefficient[1/(2 - g[t^(1/4)]), {t, 0, n}];
Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Jul 14 2018, after Peter Luschny *)
-
seq(n)={my(a=vector(n+1)); a[1]=1; for(n=1, n, a[1+n]=sum(k=1, n, binomial(4*n, 4*k) * a[1+n-k])); a} \\ Andrew Howroyd, Jan 21 2020
-
# uses[CEN from A243664]
A243665 = lambda len: CEN(4,len)
A243665(13) # Peter Luschny, Jul 06 2015
-
# Alternatively:
def PackedWords4(n):
shapes = ([x*4 for x in p] for p in Partitions(n))
return sum(factorial(len(s))*SetPartitions(sum(s), s).cardinality() for s in shapes)
[PackedWords4(n) for n in (0..12)] # Peter Luschny, Aug 02 2015
A260883
Number of m-shape ordered set partitions, square array read by ascending antidiagonals, A(m, n) for m, n >= 0.
Original entry on oeis.org
1, 1, 1, 1, 1, 3, 1, 1, 3, 9, 1, 1, 7, 13, 35, 1, 1, 21, 121, 75, 161, 1, 1, 71, 1849, 3907, 541, 913, 1, 1, 253, 35641, 426405, 202741, 4683, 6103, 1, 1, 925, 762763, 65782211, 203374081, 15430207, 47293, 47319, 1, 1, 3433, 17190265, 11872636325, 323213457781, 173959321557
Offset: 1
[ n ] [0 1 2 3 4 5 6]
[ m ] -----------------------------------------------------------
[ 0 ] [1, 1, 3, 9, 35, 161, 913] A101880
[ 1 ] [1, 1, 3, 13, 75, 541, 4683] A000670
[ 2 ] [1, 1, 7, 121, 3907, 202741, 15430207] A094088
[ 3 ] [1, 1, 21, 1849, 426405, 203374081, 173959321557] A243664
[ 4 ] [1, 1, 71, 35641, 65782211, 323213457781, 3482943541940351] A243665
A244174
For example the number of ordered set partitions of {1,2,...,9} with sizes in [9], [6,3] and [3,3,3] is 1, 168 and 1680 respectively. Thus A(3,3) = 1849.
Formatted as a triangle:
[1]
[1, 1]
[1, 1, 3]
[1, 1, 3, 9]
[1, 1, 7, 13, 35]
[1, 1, 21, 121, 75, 161]
[1, 1, 71, 1849, 3907, 541, 913]
[1, 1, 253, 35641, 426405, 202741, 4683, 6103]
-
def A260883(m, n):
shapes = ([x*m for x in p] for p in Partitions(n))
return sum(factorial(len(s))*SetPartitions(sum(s), s).cardinality() for s in shapes)
for m in (0..4): print([A260883(m, n) for n in (0..6)])
A352430
a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/5)} binomial(n,5*k+1) * a(n-5*k-1).
Original entry on oeis.org
1, 1, 2, 6, 24, 120, 721, 5054, 40488, 364896, 3654000, 40249441, 483659508, 6296246424, 88269037584, 1325861901000, 21243052172161, 361630022931666, 6518319228715302, 124018898163736536, 2483799332459535000, 52231733840672804881, 1150683180739820615582, 26502219276887376327696
Offset: 0
-
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, 5 k + 1] a[n - 5 k - 1], {k, 0, Floor[(n - 1)/5]}]; Table[a[n], {n, 0, 23}]
nmax = 23; CoefficientList[Series[1/(1 - Sum[x^(5 k + 1)/(5 k + 1)!, {k, 0, nmax}]), {x, 0, nmax}], x] Range[0, nmax]!
-
my(N=40, x='x+O('x^N)); Vec(serlaplace(1/(1-sum(k=0, N\5, x^(5*k+1)/(5*k+1)!)))) \\ Seiichi Manyama, Mar 23 2022
A326717
Coefficients of polynomials related to ordered set partitions. Triangle read by rows, T_{m}(n, k) for m = 5 and 0 <= k <= n.
Original entry on oeis.org
1, 0, 1, 0, 127, 126, 0, 255256, 381381, 126126, 0, 2979852651, 5447453786, 2956465512, 488864376, 0, 127156445503275, 264284637872750, 184292523727620, 52359004217520, 5194672859376
Offset: 0
Triangle starts:
[0] [1]
[1] [0, 1]
[2] [0, 127, 126]
[3] [0, 255256, 381381, 126126]
[4] [0, 2979852651, 5447453786, 2956465512, 488864376]
[5] [0, 127156445503275, 264284637872750, 184292523727620, 52359004217520, 5194672859376]
[6] [0, 15160169962750251082, 34544220081315967665, 28276496764200664980, 10634436034307385300, 1865368063755476280, 123378675083039376]
Showing 1-6 of 6 results.
Comments