cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 77 results. Next

A139347 Decimal expansion of negated tangent of the golden ratio. That is, the decimal expansion of -tan((1+sqrt(5))/2).

Original entry on oeis.org

2, 1, 1, 5, 3, 8, 0, 0, 7, 8, 2, 4, 9, 3, 2, 7, 4, 6, 4, 8, 5, 8, 6, 2, 8, 1, 1, 7, 0, 3, 2, 5, 8, 2, 5, 5, 9, 7, 8, 8, 1, 2, 4, 3, 6, 7, 4, 6, 4, 8, 2, 6, 0, 8, 6, 3, 7, 0, 7, 5, 6, 8, 9, 4, 5, 9, 9, 4, 5, 9, 8, 7, 2, 7, 5, 9, 3, 2, 8, 2, 0, 2, 6, 8, 0, 0, 3, 5, 4, 7, 7, 5, 6, 0, 6, 9, 6, 3, 4, 2, 5, 8, 1, 4, 5
Offset: 2

Views

Author

Mohammad K. Azarian, Apr 15 2008

Keywords

Comments

By the Lindemann-Weierstrass theorem, this constant is transcendental. - Charles R Greathouse IV, May 13 2019

Examples

			-21.15380078249327464858628117032582559788124367464826...
		

Crossrefs

Programs

Formula

Equals tan(A001622).
From Amiram Eldar, Feb 07 2022: (Start)
Equals 1/A139348.
Equals A139345/A139346. (End)

Extensions

Offset corrected by Mohammad K. Azarian, Dec 13 2008
Sign added to definition by R. J. Mathar, Feb 05 2009

A139348 Decimal expansion of negated cotangent of the golden ratio. That is, the decimal expansion of -cot((1+sqrt(5))/2).

Original entry on oeis.org

0, 4, 7, 2, 7, 2, 8, 2, 8, 6, 6, 4, 7, 9, 4, 4, 8, 1, 1, 8, 9, 3, 5, 6, 5, 0, 9, 6, 0, 6, 2, 1, 6, 3, 3, 4, 2, 0, 0, 5, 6, 1, 0, 5, 7, 2, 2, 5, 5, 6, 5, 3, 3, 0, 9, 7, 7, 2, 9, 9, 2, 5, 3, 2, 4, 7, 9, 8, 7, 7, 2, 2, 1, 4, 5, 2, 5, 6, 8, 8, 1, 6, 8, 7, 9, 8, 8, 7, 5, 0, 5, 2, 9, 9, 3, 8, 8, 0, 7, 0, 2, 1, 5, 3
Offset: 0

Views

Author

Mohammad K. Azarian, Apr 15 2008

Keywords

Comments

By the Lindemann-Weierstrass theorem, this constant is transcendental. - Charles R Greathouse IV, May 13 2019

Examples

			0.04727282866479448118935650960621633420056105722556...
		

Crossrefs

Programs

Formula

Equals cot(A001622).
From Amiram Eldar, Feb 07 2022: (Start)
Equals 1/A139347.
Equals A139346/A139345. (End)

Extensions

Added sign in definition. Leading zero dropped by R. J. Mathar, Feb 05 2009

A272535 Decimal expansion of the edge length of a regular 16-gon with unit circumradius.

Original entry on oeis.org

3, 9, 0, 1, 8, 0, 6, 4, 4, 0, 3, 2, 2, 5, 6, 5, 3, 5, 6, 9, 6, 5, 6, 9, 7, 3, 6, 9, 5, 4, 0, 4, 4, 4, 8, 1, 8, 5, 5, 3, 8, 3, 2, 3, 5, 5, 0, 3, 9, 0, 9, 6, 1, 5, 5, 0, 9, 0, 0, 4, 1, 7, 8, 9, 8, 9, 5, 2, 6, 6, 3, 7, 5, 7, 1, 8, 4, 9, 1, 6, 0, 4, 5, 0, 6, 5, 0, 6, 1, 8, 4, 6, 8, 1, 8, 0, 7, 6, 3, 4, 6, 1, 9, 8, 4
Offset: 0

Views

Author

Stanislav Sykora, May 02 2016

Keywords

Comments

Like all m-gons with m equal to a power of 2 (see A003401 and A000079), this is a constructible number.

Examples

			0.390180644032256535696569736954044481855383235503909615509004...
		

Crossrefs

Edge lengths of other constructible m-gons: A002194 (m=3), A002193 (4), A182007 (5), A101464 (8), A094214 (10), A101263 (12), A272534 (15), A228787 (17), A272536 (20).

Programs

  • Mathematica
    RealDigits[N[2Sin[Pi/16], 100]][[1]] (* Robert Price, May 02 2016*)
  • PARI
    2*sin(Pi/16)

Formula

Equals 2*sin(Pi/m) for m=16, 2*A232738. Equals also sqrt(2-sqrt(2+sqrt(2))).

A272536 Decimal expansion of the edge length of a regular 20-gon with unit circumradius.

Original entry on oeis.org

3, 1, 2, 8, 6, 8, 9, 3, 0, 0, 8, 0, 4, 6, 1, 7, 3, 8, 0, 2, 0, 2, 1, 0, 6, 3, 8, 9, 3, 4, 3, 3, 3, 7, 8, 4, 6, 2, 7, 7, 9, 9, 7, 8, 4, 1, 7, 1, 3, 2, 1, 5, 8, 0, 1, 6, 9, 2, 8, 2, 6, 9, 2, 1, 1, 5, 5, 1, 7, 5, 8, 6, 6, 1, 1, 2, 4, 7, 1, 5, 8, 6, 7, 3, 3, 9, 1, 7, 4, 5, 3, 5, 3, 6, 9, 7, 3, 7, 6, 7, 5, 0, 2, 8, 0
Offset: 0

Views

Author

Stanislav Sykora, May 02 2016

Keywords

Comments

Since 20-gon is constructible (see A003401), this is a constructible number.

Examples

			0.3128689300804617380202106389343337846277997841713215801692826921...
		

Crossrefs

Cf. A003401.
Edge lengths of other constructible m-gons: A002194 (m=3), A002193 (4), A182007 (5), A101464 (8), A094214 (10), A101263 (12), A272534 (15), A272535 (16), A228787 (17).
Cf. A019818.

Programs

  • Mathematica
    RealDigits[N[2Sin[Pi/20], 100]][[1]] (* Robert Price, May 02 2016*)
  • PARI
    2*sin(Pi/20)

Formula

Equals 2*sin(Pi/20) = 2*A019818.
Equals also (sqrt(2)+sqrt(10)-2*sqrt(5-sqrt(5)))/4.
Equals i^(9/10) + i^(-9/10). - Gary W. Adamson, Jul 08 2022

A089959 a(n) = floor(1/(f(n) - f(n)^2)) with f(n) = frac(n*(sqrt(5) - 1)/2) (fractional part).

Original entry on oeis.org

4, 5, 8, 4, 12, 4, 4, 19, 4, 6, 6, 4, 30, 4, 5, 10, 4, 9, 5, 4, 48, 4, 5, 7, 4, 15, 4, 4, 14, 4, 7, 5, 4, 77, 4, 5, 8, 4, 10, 4, 4, 24, 4, 6, 6, 4, 22, 4, 4, 11, 4, 8, 5, 4, 124, 4, 5, 7, 4, 13, 4, 4, 16, 4, 7, 6, 4, 39, 4, 5, 9, 4, 9, 5, 4, 35, 4, 6, 6, 4
Offset: 1

Views

Author

Gary W. Adamson, Nov 16 2003

Keywords

Comments

Denote by Fn and Ln the Fibonacci resp. Lucas numbers. Then some of the terms follow one of the following two patterns: (1) a(Fn) = (Ln + 1). Example: a(8) = 19 since 8 = F6 and 18 = L6. (2) a(Ln) = (Fn + 1). Example: a(29) = 14 = (F7 + 1) = (13 + 1).

Examples

			a(7) = floor(1/({7*k}*(1 - {7*k}))) = floor(1/({4.326...}*(1 - {4.326...}))) = floor(1/(0.326...*0.673...)) = floor(4.549...) = 4.
		

Crossrefs

Cf. A094214.

Programs

  • Mathematica
    Table[Floor[1/(FractionalPart[(2*n)/(1+Sqrt[5])]*(1-FractionalPart[ (2*n)/(1 + Sqrt[5])]))], {n, 1, 80}] (* Stefan Steinerberger, Jul 01 2007 *)
  • PARI
    default(realprecision,200);p=(sqrt(5)-1)/2;vector(100,n,1\(frac(n*p)-frac(n*p)^2)) \\ M. F. Hasler, Apr 06 2009

Formula

a(n) = floor(1/({n*k}*(1 - {n*k}))); k = (sqrt(5) - 1)/2; where {x} = fractional part of x.

Extensions

Corrected and extended by Stefan Steinerberger, Jul 01 2007
Definition, comment and example reworded and corrected by M. F. Hasler, Apr 06 2009

A139349 Decimal expansion of negated secant of the golden ratio. That is, the decimal expansion of -sec((1+sqrt(5))/2).

Original entry on oeis.org

2, 1, 1, 7, 7, 4, 2, 4, 0, 0, 6, 3, 6, 6, 1, 4, 4, 4, 0, 8, 7, 2, 8, 0, 4, 0, 4, 0, 9, 3, 7, 1, 3, 0, 2, 1, 3, 3, 0, 7, 1, 8, 5, 3, 5, 5, 3, 6, 4, 1, 7, 4, 0, 6, 1, 7, 5, 4, 3, 5, 6, 5, 6, 6, 7, 8, 9, 4, 6, 1, 6, 1, 8, 5, 2, 9, 6, 3, 3, 7, 1, 6, 9, 2, 4, 2, 6, 8, 3, 7, 9, 4, 9, 2, 4, 6, 5, 3, 3, 1, 8, 7, 3, 3, 6
Offset: 2

Views

Author

Mohammad K. Azarian, Apr 15 2008

Keywords

Comments

By the Lindemann-Weierstrass theorem, this constant is transcendental. - Charles R Greathouse IV, May 13 2019

Examples

			21.17742400636614440872804040937130213307185355364174...
		

Crossrefs

Programs

Formula

Equals sec(A001622).
Equals 1/A139346. - Amiram Eldar, Feb 07 2022

Extensions

Offset corrected by Mohammad K. Azarian, Dec 13 2008
Sign in definition added by R. J. Mathar, Feb 05 2009

A139350 Decimal expansion of csc((1+sqrt(5))/2), where (1+sqrt(5))/2 is the golden ratio.

Original entry on oeis.org

1, 0, 0, 1, 1, 1, 6, 7, 3, 6, 6, 1, 4, 6, 5, 2, 2, 5, 4, 8, 9, 6, 1, 6, 7, 1, 1, 3, 5, 1, 7, 0, 5, 5, 8, 7, 7, 9, 4, 4, 6, 1, 5, 3, 1, 8, 0, 6, 6, 2, 4, 2, 8, 2, 0, 2, 8, 2, 4, 0, 4, 9, 7, 6, 6, 5, 7, 8, 8, 2, 6, 9, 7, 8, 7, 7, 5, 5, 0, 9, 6, 1, 7, 2, 9, 4, 7, 0, 3, 9, 9, 5, 8, 1, 1, 1, 3, 6, 1, 9, 2, 6, 8, 8, 2
Offset: 1

Views

Author

Mohammad K. Azarian, Apr 15 2008

Keywords

Comments

By the Lindemann-Weierstrass theorem, this constant is transcendental. - Charles R Greathouse IV, May 13 2019

Examples

			1.00111673661465225489616711351705587794461531806624...
		

Crossrefs

Programs

Formula

Equals 1/A139345. - Amiram Eldar, Feb 07 2022

Extensions

Edited by Bruno Berselli, Feb 19 2013

A140232 a(n) = ceiling(n*exp((1+sqrt(5))/2)).

Original entry on oeis.org

6, 11, 16, 21, 26, 31, 36, 41, 46, 51, 56, 61, 66, 71, 76, 81, 86, 91, 96, 101, 106, 111, 116, 122, 127, 132, 137, 142, 147, 152, 157, 162, 167, 172, 177, 182, 187, 192, 197, 202, 207, 212, 217, 222, 227, 232, 238, 243, 248, 253, 258, 263, 268, 273, 278, 283
Offset: 1

Views

Author

Mohammad K. Azarian, May 13 2008

Keywords

Crossrefs

Programs

  • Magma
    phi:=(1+Sqrt(5))/2; [Ceiling(n*Exp(phi)): n in [1..60]]; // G. C. Greubel, Jun 30 2019
    
  • Mathematica
    Ceiling[Exp[GoldenRatio]*Range[60]] (* G. C. Greubel, Jun 30 2019 *)
  • PARI
    phi=(1+sqrt(5))/2; vector(60, n, ceil(n*exp(phi)) ) \\ G. C. Greubel, Jun 30 2019
    
  • Sage
    [ceil(n*exp(golden_ratio)) for n in (1..60)] # G. C. Greubel, Jun 30 2019

Formula

a(n) = ceiling(n*A139341). - R. J. Mathar, Feb 06 2009

A152115 Decimal expansion of the dilogarithm of (the golden mean minus 1), Li_2(phi-1).

Original entry on oeis.org

7, 5, 5, 3, 9, 5, 6, 1, 9, 5, 3, 1, 7, 4, 1, 4, 6, 9, 3, 8, 6, 5, 2, 0, 0, 2, 8, 7, 5, 6, 0, 8, 2, 3, 5, 3, 5, 1, 4, 9, 6, 3, 5, 9, 0, 6, 7, 4, 7, 8, 0, 1, 9, 1, 8, 2, 6, 0, 3, 3, 7, 0, 8, 9, 3, 2, 2, 0, 9, 1, 3, 6, 6, 7, 4, 9, 5, 8, 7, 1, 1, 3, 1, 5, 1, 2, 2, 7, 9, 3, 2, 8, 5, 4, 6, 6, 8, 2, 8, 1, 2, 6, 6, 5, 9
Offset: 0

Views

Author

R. J. Mathar, Nov 24 2008

Keywords

Comments

Equals Li_2(phic) = L(phic)-log(phic)*log(1-phic)/2 = A002388/10 - A002390^2, where Li_2(.) is the dilogarithm, L(.) is Roger's dilogarithm, where phic = phi-1 = A094214, where -log(phic)= A002390 = log(1-phic)/2.

Examples

			Equals 0.7553956195317414693865200287560823535149635906747...
		

References

  • L. B. W. Jolley, Summation of Series, Dover (1961)

Programs

  • Mathematica
    RealDigits[ PolyLog[2, (Sqrt[5]-1)/2], 10, 105] // First (* Jean-François Alcover, Feb 12 2013 *)
  • PARI
    phic=(sqrt(5)-1)/2 ; dilog(phic);

Formula

Equals sum_{n>=1} x^n/n^2 for x= 2*sin(Pi/10). [Jolley eq (360d)]

Extensions

More terms from Jean-François Alcover, Feb 12 2013

A189378 a(n) = n + [nr/s] + [nt/s]; r=2, s=(-1+sqrt(5))/2, t=(1+sqrt(5))/2.

Original entry on oeis.org

6, 13, 19, 26, 34, 40, 47, 53, 61, 68, 74, 81, 89, 95, 102, 108, 116, 123, 129, 136, 142, 150, 157, 163, 170, 178, 184, 191, 197, 205, 212, 218, 225, 233, 239, 246, 252, 259, 267, 273, 280, 286, 294, 301, 307, 314, 322, 328, 335, 341, 349, 356, 362, 369, 375, 383, 390, 396, 403, 411, 417, 424, 430, 438, 445, 451, 458, 466, 472, 479, 485, 492, 500, 506, 513, 519, 527, 534, 540, 547, 555, 561
Offset: 1

Views

Author

Clark Kimberling, Apr 20 2011

Keywords

Comments

Theorem: These are the numbers k such that (k+1)-sections of the Fibonacci word contain neither "000" nor "111". Proved by J. Shallit and "Walnut", Apr 06 2021. - Don Reble, Apr 06 2021

Crossrefs

See also A339950.

Programs

Previous Showing 41-50 of 77 results. Next