cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A243585 Expansion of x*log'(C(C(x)-1)-1), C(x) = (1-sqrt(1-4*x))/(2*x).

Original entry on oeis.org

1, 4, 20, 106, 580, 3244, 18446, 106250, 618340, 3628600, 21438820, 127377980, 760346350, 4556473276, 27396081950, 165189725326, 998492094244, 6048338850560, 36706629690824, 223139239595840, 1358475322091620
Offset: 0

Views

Author

Vladimir Kruchinin, Jun 07 2014

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/(Sqrt[(1-4*x)*(2*Sqrt[1-4*x]+5*x-2)/x]), {x, 0, 20}], x] (* Vaclav Kotesovec, Jun 08 2014 *)
    A243585[n_] := Binomial[2 n, n] Hypergeometric2F1[1/2, -n, n + 1, -4];
    Table[A243585[n], {n, 0, 20}] (* Peter Luschny, Aug 04 2019 *)
  • Maxima
    a(n):=sum(binomial(2*k,k)*binomial(2*n,n-k),k,0,n);

Formula

a(n) = Sum_{k=0..n} binomial(2*k,k)*binomial(2*n,n-k).
a(n) ~ 5^(2*n+1/2) / (4^n * sqrt(3*Pi*n)). - Vaclav Kotesovec, Jun 08 2014
First column of A094527^2. 1 + x*exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + x + 4*x^2 + 18*x^3 + 86*x^4 + ... is the o.g.f. for A153294. - Peter Bala, Jul 21 2015
Conjecture D-finite with recurrence: 2*n*(2*n-1)*(3*n-5)*a(n) +(-123*n^3+328*n^2-249*n+60)*a(n-1) +50*(n-1)*(2*n-3)*(3*n-2)*a(n-2)=0. - R. J. Mathar, Jun 14 2016
a(n) = binomial(2*n, n)*hypergeom([1/2, -n], [n + 1], -4). - Peter Luschny, Aug 04 2019

A226197 Numbers of vectors with 2*n integers such that each element is either 1 or -1, and their sum > n.

Original entry on oeis.org

1, 1, 7, 9, 56, 79, 470, 697, 4048, 6196, 35443, 55455, 313912, 499178, 2804012, 4514873, 25211936, 40999516, 227881004, 373585604, 2068564064, 3414035527, 18844224462, 31278197839, 172186125456, 287191809724, 1577401391626, 2642070371194, 14483100716176, 24347999094724
Offset: 1

Views

Author

Alex Ratushnyak, May 31 2013

Keywords

Examples

			With n=3 there are 7 vectors with sum bigger than 3:
{1, 1, 1, 1, 1, 1}
{-1, 1, 1, 1, 1, 1}
{1, -1, 1, 1, 1, 1}
{1, 1, -1, 1, 1, 1}
{1, 1, 1, -1, 1, 1}
{1, 1, 1, 1, -1, 1}
{1, 1, 1, 1, 1, -1}
So a(3) = 7.
		

Programs

  • C
    #include 
    long long count, n;
    void addOne(long long sum, long long added) {
      if (added==n*2) {
        if (sum>n) ++count;
        return;
      }
      ++added;
      addOne(sum+1, added);
      addOne(sum-1, added);
    }
    int main() {
      for (n=1; n<99; n++) {
        count = 0;
        addOne(0, 0);
        printf("%llu, ", count);
      }
      return 0;
    }
  • Maple
    A226197 := proc(n)
        add( A094527(n,k),k=1+floor(n/2)..n) ;
    end proc: # R. J. Mathar, Jun 04 2013
  • Mathematica
    a[n_] := Sum[(2*n)!/((n-k)!*(n+k)!), {k, 1 + Floor[n/2], n}]; Array[a,30] (* Giovanni Resta, May 31 2013 *)

Formula

a(n) = sum_{k = 1+floor(n/2)...n} binomial(2n,n-k), sum of the n/2 rightmost elements of row n of A094527. - Giovanni Resta, May 31 2013

A269956 Triangle read by rows, T(n,k) = binomial(3*n,n+k) for n>=0 and 0<=k<=n.

Original entry on oeis.org

1, 3, 3, 15, 20, 15, 84, 126, 126, 84, 495, 792, 924, 792, 495, 3003, 5005, 6435, 6435, 5005, 3003, 18564, 31824, 43758, 48620, 43758, 31824, 18564, 116280, 203490, 293930, 352716, 352716, 293930, 203490, 116280, 735471, 1307504, 1961256, 2496144, 2704156, 2496144, 1961256, 1307504, 735471
Offset: 0

Views

Author

Peter Luschny, Mar 28 2016

Keywords

Examples

			Triangle starts:
1,
3,    3,
15,   20,   15,
84,   126,  126,  84,
495,  792,  924,  792,  495,
3003, 5005, 6435, 6435, 5005, 3003
		

Crossrefs

Cf. binomial(m*n,n+k): A000007 (m=0), A010054 (m=1), A094527 (m=2).
Cf. A005809.

Programs

  • Magma
    /* As triangle */ [[Binomial(3*n, n+k): k in [0..n]]: n in [0.. 7]]; // Vincenzo Librandi, Mar 28 2016
    
  • Maple
    for n from 0 to 6 do seq(binomial(3*n,n+k), k=0..n) od;
  • Mathematica
    Table[Binomial[3 n, n + k], {n, 0, 10}, {k, 0, n}]//Flatten (* Vincenzo Librandi, Mar 28 2016 *)
  • PARI
    t(n, k) = binomial(3*n, n+k)
    trianglerows(n) = for(x=0, n-1, for(y=0, x, print1(t(x, y), ", ")); print(""))
    /* The following function call prints the upper six rows of the triangle */
    trianglerows(6) \\ Felix Fröhlich, Mar 28 2016

Formula

T(n,0) = T(n,n) = A005809(n).

A380113 Triangle read by rows: The inverse matrix of the central factorials A370707, row n normalized by (-1)^(n - k)*A370707(n, n).

Original entry on oeis.org

1, 1, 1, 3, 4, 1, 10, 15, 6, 1, 35, 56, 28, 8, 1, 126, 210, 120, 45, 10, 1, 462, 792, 495, 220, 66, 12, 1, 1716, 3003, 2002, 1001, 364, 91, 14, 1, 6435, 11440, 8008, 4368, 1820, 560, 120, 16, 1, 24310, 43758, 31824, 18564, 8568, 3060, 816, 153, 18, 1
Offset: 0

Views

Author

Peter Luschny, Jan 12 2025

Keywords

Comments

The inverse matrix of A370707 is a rational matrix and the normalization serves to make it a matrix over the integers. Note that the normalization factor A370707(n, n) = FallingFactorial(n, n) * RisingFactorial(n, n) extends A002674 to n = 0.

Examples

			Triangle starts:
  [0] [    1]
  [1] [    1,     1]
  [2] [    3,     4,     1]
  [3] [   10,    15,     6,     1]
  [4] [   35,    56,    28,     8,    1]
  [5] [  126,   210,   120,    45,   10,    1]
  [6] [  462,   792,   495,   220,   66,   12,   1]
  [7] [ 1716,  3003,  2002,  1001,  364,   91,  14,   1]
  [8] [ 6435, 11440,  8008,  4368, 1820,  560, 120,  16,  1]
  [9] [24310, 43758, 31824, 18564, 8568, 3060, 816, 153, 18, 1]
.
Row 3 of the matrix inverse of the central factorials is [-1/36, 1/24, -1/60, 1/360]. Normalized with (-1)^(n-k)*360 gives row 3 of T.
		

Crossrefs

Variant: A094527.
Cf. A370707, A002674, A008311, A088218 and A110556 (column 0), A081294 (row sums), A000007 (alternating row sums), A005810 (central terms).

Programs

  • Maple
    T := (n, k) -> if n = k then 1 elif k = 0 then binomial(2*n, n - k)/2 else binomial(2*n, n - k) fi: seq(seq(T(n, k), k = 0..n), n = 0..9);
  • Mathematica
    A380113[n_, k_] := Binomial[2*n, n - k]/(Boole[k == 0 && n > 0] + 1);
    Table[A380113[n, k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Jan 13 2025 *)
  • SageMath
    def Trow(n):
        def cf(n, k): return falling_factorial(n, k)*rising_factorial(n, k)
        def w(n): return factorial(n)*rising_factorial(n, n)
        m = matrix(QQ, n + 1, lambda x, y: cf(x, y)).inverse()
        return [(-1)^(n-k)*w(n)*m[n, k] for k in range(n+1)]
    for n in range(10): print(Trow(n))

Formula

T(n, k) = (-1)^(n - k) * ff(n, n) * rf(n, n) * M^(-1)(ff(n, k) * rf(n, k)) where ff denotes the falling factorial, rf the rising factorial and M^(-1)(t(n, k)) the matrix inverse to the matrix with entries t(n, k).
T(n, k) = binomial(2*n, n - k) for 0 < k < n. T(n, n) = 1; T(n, 0) = (-1)^n*binomial(-n, n).
Sum_{k=0..n} T(n, k)*cos(k*x) = 2^(n-1)*(cos(x)+1)^n. (After Philippe Deléham in A008311).

A386825 Triangle read by rows: T(n,k) = 3^(n-k)*C(2*n,n-k).

Original entry on oeis.org

1, 6, 1, 54, 12, 1, 540, 135, 18, 1, 5670, 1512, 252, 24, 1, 61236, 17010, 3240, 405, 30, 1, 673596, 192456, 40095, 5940, 594, 36, 1, 7505784, 2189187, 486486, 81081, 9828, 819, 42, 1, 84440070, 25019280, 5837832, 1061424, 147420, 15120, 1080, 48, 1, 956987460, 287096238
Offset: 0

Views

Author

Enrique Navarrete, Aug 04 2025

Keywords

Comments

Row sums are A386826.

Examples

			Triangle begins:
        1;
        6,       1;
       54,      12,      1;
      540,     135,     18,     1;
     5670,    1512,    252,    24,    1;
    61236,   17010,   3240,   405,   30,   1;
   673596,  192456,  40095,  5940,  594,  36,  1;
  7505784, 2189187, 486486, 81081, 9828, 819, 42, 1;
  ...
		

Crossrefs

Programs

  • Mathematica
    Flatten[Table[3^(n-k) Binomial[2n, n-k], {n, 0, 9}, {k, 0, n}]]

Formula

T(n,k) = 3^(n-k)*A094527(n,k).

A111505 Right half of Pascal's triangle (A007318) with zeros.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 0, 3, 1, 0, 0, 6, 4, 1, 0, 0, 0, 10, 5, 1, 0, 0, 0, 20, 15, 6, 1, 0, 0, 0, 0, 35, 21, 7, 1, 0, 0, 0, 0, 70, 56, 28, 8, 1, 0, 0, 0, 0, 0, 126, 84, 36, 9, 1, 0, 0, 0, 0, 0, 252, 210, 120, 45, 10, 1, 0, 0, 0, 0, 0, 0, 462, 330, 165
Offset: 0

Views

Author

Philippe Deléham, Nov 16 2005

Keywords

Comments

A034869 is the version without zeros.

Examples

			Triangle begins:
1;
0, 1;
0, 2, 1;
0, 0, 3, 1;
0, 0, 6, 4, 1;
0, 0, 0, 10, 5, 1;
0, 0, 0, 20, 15, 6, 1;
0, 0, 0, 0, 35, 21, 7, 1;
0, 0, 0, 0, 70, 56, 28, 8, 1;
0, 0, 0, 0, 0, 126, 84, 36, 9, 1;
0, 0, 0, 0, 0, 252, 210, 120, 45, 10, 1;
0, 0, 0, 0, 0, 0, 462, 330, 165, 55, 11, 1;
0, 0, 0, 0, 0, 0, 924, 792, 495, 220, 66, 12, 1;
0, 0, 0, 0, 0, 0, 0, 1716, 1287, 715, 286, 78, 13, 1;
0, 0, 0, 0, 0, 0, 0, 3432, 3003, 2002, 1001, 364, 91, 14, 1;
		

Crossrefs

Formula

Sum_{n, n>=k} T(n, k) = A001700(k).
Sum_{k =0..2*n} T(2*n, k) = A032443(n).
Sum_{k=0..2*n+1} T(2*n+1, k) = 4^n = A000302(n).
Sum_{k=0..2*n} T(2*n, k)^2 = A036910(n).
Sum_{k=0..2*n+1} T(2*n+1, k)^2 = C(4*n+1, 2*n) = A002458(n) . Paul D. Hanna
Previous Showing 11-16 of 16 results.