cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 23 results. Next

A097010 Numbers n such that zero is eventually reached when the map x -> A034460(x) is iterated, starting from x = n.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79
Offset: 1

Views

Author

Labos Elemer, Aug 31 2004

Keywords

Comments

Numbers n for which A318880(n) = 0. - Antti Karttunen, Sep 23 2018
The sequence doesn't contain any numbers from attractor sets like A002827, A063991, A097024, A097030, etc, nor any number x such that the iteration of the map x -> A034460(x) would lead to such an attractor set (e.g., numbers in A097034 - A097037). - Antti Karttunen, Sep 24 2018, after the original author's example.

Crossrefs

Cf. A003062 (complement), A318880.
Differs from A129487 for the first time at n=51, as A129487(51) = 54, but that term is lacking here, as in this sequence a(51) = 55.

Programs

  • Mathematica
    di[x_] :=Divisors[x];ta={{0}}; ud[x_] :=Part[di[x],Flatten[Position[GCD[di[x],Reverse[di[x]]],1]]]; asu[x_] :=Apply[Plus,ud[x]]-x;nsf[x_,ho_] :=NestList[asu,x,ho] Do[g=n;s=Last[NestList[asu,n,100]];If[Equal[s,0],Print[{n,s}]; ta=Append[ta,n]],{n,1,256}];ta = Delete[ta,1]
  • PARI
    up_to = 10000;
    A034460(n) = (sumdivmult(n, d, if(gcd(d, n/d)==1, d))-n); \\ From A034460
    A318880(n) = { my(visited = Map()); for(j=1, oo, if(mapisdefined(visited, n), return(1), mapput(visited, n, j)); n = A034460(n); if(!n,return(0))); };
    A097010list(up_to) = { my(v = vector(up_to), k=0, n=1); while(kA318880(n), k++; v[k] = n); n++); (v); };
    v097010 = A097010list(up_to);
    A097010(n) = v097010[n]; \\ Antti Karttunen, Sep 24 2018

Extensions

Edited by Antti Karttunen, Sep 24 2018

A097033 Number of transient terms before either 0 or a finite cycle is reached when unitary-proper-divisor-sum-function f(x) = A034460(x) is iterated and the initial value is n.

Original entry on oeis.org

1, 2, 2, 2, 2, 0, 2, 2, 2, 3, 2, 3, 2, 4, 3, 2, 2, 4, 2, 4, 3, 5, 2, 4, 2, 3, 2, 4, 2, 0, 2, 2, 4, 5, 3, 5, 2, 6, 3, 5, 2, 0, 2, 3, 4, 4, 2, 5, 2, 5, 4, 5, 2, 0, 3, 3, 3, 3, 2, 0, 2, 6, 3, 2, 3, 2, 2, 6, 3, 7, 2, 5, 2, 6, 3, 5, 3, 1, 2, 6, 2, 4, 2, 6, 3, 5, 5, 5, 2, 0, 4, 5, 4, 6, 3, 6, 2, 6, 4, 1, 2, 1, 2, 6, 6
Offset: 1

Views

Author

Labos Elemer, Aug 30 2004

Keywords

Examples

			From _Antti Karttunen_, Sep 24 2018: (Start)
For n = 1, A034460(1) = 0 that is, we end to a terminal zero after a transient part of length 1, thus a(1) = 1.
For n = 2, A034460(2) = 1, and A034460(1) = 0, so we end to a terminal zero after a transient part of length 2, thus a(2) = 2.
For n = 30, A034460(30) = 42, A034460(42) = 54, A034460(54) = 30, thus a(30) = a(42) = a(54) = 0, as 30, 42 and 54 are all contained in their own terminal cycle, without a preceding transient part. (End)
For n = 1506, the iteration-list is {1506, 1518, 1938, 2382, 2394, 2406, [2418, 2958, 3522, 3534, 4146, 4158, 3906, 3774, 4434, 4446, 3954, 3966, 3978, 3582, 2418, ..., ad infinitum]}. After a transient of length 6 the iteration ends in a cycle of length 14, thus a(1506) = 6.
If a(n) = 0, then n is a term in an attractor set like A002827, A063991, A097024, A097030.
		

Crossrefs

Cf. A318883 (sequence that implements the original definition of this sequence).

Programs

  • Mathematica
    a034460[0] = 0; (* avoids dividing by 0 when an iteration reaches 0 *)
    a034460[n_] := Total[Select[Divisors[n], GCD[#, n/#]==1&]]-n/;n>0
    transient[k_] := Module[{iter=NestWhileList[a034460, k, UnsameQ, All]}, Position[iter, Last[iter]][[1, 1]]-1]
    a097033[n_] := Map[transient, Range[n]]
    a097033[105] (* Hartmut F. W. Hoft, Jan 24 2024 *)
  • PARI
    A034460(n) = (sumdivmult(n, d, if(gcd(d, n/d)==1, d))-n); \\ From A034460
    A097033(n) = { my(visited = Map()); for(j=1, oo, if(mapisdefined(visited, n), return(mapget(visited, n)-1), mapput(visited, n, j)); n = A034460(n); if(!n,return(j))); }; \\ Antti Karttunen, Sep 23 2018

Formula

a(n) = A318883(n) + (1-A318880(n)). - Antti Karttunen, Sep 23 2018

Extensions

Definition corrected (to agree with the given terms) by Antti Karttunen, Sep 23 2018, based on observations by Hartmut F. W. Hoft

A318883 Number of transient terms if unitary-proper-divisor-sum-function f(x) = A063919(x) is iterated and the initial value is n.

Original entry on oeis.org

0, 1, 1, 1, 1, 0, 1, 1, 1, 2, 1, 2, 1, 3, 2, 1, 1, 3, 1, 3, 2, 4, 1, 3, 1, 2, 1, 3, 1, 0, 1, 1, 3, 4, 2, 4, 1, 5, 2, 4, 1, 0, 1, 2, 3, 3, 1, 4, 1, 4, 3, 4, 1, 0, 2, 2, 2, 2, 1, 0, 1, 5, 2, 1, 2, 2, 1, 5, 2, 6, 1, 4, 1, 5, 2, 4, 2, 1, 1, 5, 1, 3, 1, 5, 2, 4, 4, 4, 1, 0, 3, 4, 3, 5, 2, 5, 1, 5, 3, 1, 1, 1, 1, 5, 5
Offset: 1

Views

Author

Antti Karttunen, Sep 22 2018, after Labos Elemer's A097033

Keywords

Comments

This sequence implements the original definition given for A097033.

Examples

			For n = 1, A063919(1) = 1, that is, we immediately end with a terminal cycle (of length 1 in this case), thus there are no transient part, and a(1) = 0.
For n = 2, A063919(2) = 1, and A063919(1) = 1, so we end with a terminal cycle after a transient part of length 1, thus a(2) = 1.
For n = 30, A063919(30) = 42, A063919(42) = 54, A063919(54) = 30, thus a(30) = a(42) = a(54) = 0, as 30, 42 and 54 are all contained in their own terminal cycle, without a preceding transient part.
For n = 1506, the iteration-list is {1506, 1518, 1938, 2382, 2394, 2406, [2418, 2958, 3522, 3534, 4146, 4158, 3906, 3774, 4434, 4446, 3954, 3966, 3978, 3582, 2418, ..., ad infinitum]}. After a transient of length 6 the iteration ends in a cycle of length 14, thus a(1506) = 6.
If a(n) = 0, then n is a term in an attractor set like A002827, A063991, A097024, A097030.
		

Crossrefs

Programs

  • Mathematica
    a063919[1] = 1; (* function a[] in A063919 by Jean-François Alcover *)
    a063919[n_] := Total[Select[Divisors[n], GCD[#, n/#]==1&]]-n/;n>1
    transient[k_] := Module[{iter=NestWhileList[a063919, k, UnsameQ, All]}, Position[iter, Last[iter]][[1, 1]]]-1
    a318883[n_] := Map[transient, Range[n]]
    a318883[105] (* Hartmut F. W. Hoft, Jan 25 2024 *)
  • PARI
    A034460(n) = (sumdivmult(n, d, if(gcd(d, n/d)==1, d))-n); \\ From A034460
    A063919(n) = if(1==n,n,A034460(n));
    A318883(n) = { my(visited = Map()); for(j=1, oo, if(mapisdefined(visited, n), return(mapget(visited, n)-1), mapput(visited, n, j)); n = A063919(n)); };
    \\ Or by using lists:
    pil(item,lista) = { for(i=1,#lista,if(lista[i]==item,return(i))); (0); };
    A318883(n) = { my(visited = List([]), k); for(j=1, oo, if((k = pil(n,visited)) > 0, return(k-1)); listput(visited, n); n = A063919(n)); };

Formula

a(n) = A318882(n) - A097031(n).
a(n) = A097033(n) + A318880(n) - 1.

A327157 Numbers that are members of unitary sigma aliquot cycles (union of unitary perfect, unitary amicable and unitary sociable numbers).

Original entry on oeis.org

6, 30, 42, 54, 60, 90, 114, 126, 1140, 1260, 1482, 1878, 1890, 2142, 2178, 2418, 2958, 3522, 3534, 3582, 3774, 3906, 3954, 3966, 3978, 4146, 4158, 4434, 4446, 18018, 22302, 24180, 29580, 32130, 35220, 35238, 35340, 35820, 37740, 38682, 39060, 39540, 39660, 39780, 40446, 41460, 41580, 44340, 44460, 44772, 45402
Offset: 1

Views

Author

Antti Karttunen, Sep 17 2019

Keywords

Comments

Positions of nonzeros in A327159.
Numbers n for which n = A034460^k(n) for some k >= 1, where A034460^k(n) means k-fold application of A034460 starting from n.
The terms that are not multiples of 6 are: 142310, 168730, 1077890, 1099390, 1156870, 1292570, ..., that seem all to be present in A063991.
Among the first 440 terms, there are numbers present in 1-cycles (A002827), 2-cycles (A063991), and also cycles of sizes 3, 4 (A319902), 5 (A097024), 6 (A319917), 14 (A097030), 25, 26, 39 and 65.

Examples

			6 is a member as A034460(6) = 6.
30 is a member as A034460(A034460(A034460(30))) = 30.
		

Crossrefs

Subsequence of A003062.

Programs

  • Mathematica
    (* Function cycleL[] and support a034460[] are defined in A327159 *)
    a327157[n_] := Map[cycleL, Range[n]]
    a327157[45402] (* Hartmut F. W. Hoft, Feb 04 2024 *)
  • PARI
    A034448(n) = { my(f=factorint(n)); prod(k=1, #f~, 1+(f[k, 1]^f[k, 2])); };
    A034460(n) = (A034448(n) - n);
    memo327159 = Map();
    A327159(n) = if(1==n,0,my(v,orgn=n,xs=Set([])); if(mapisdefined(memo327159, n, &v), v, while(n && !vecsearch(xs,n), xs = setunion([n],xs); n = A034460(n); if(mapisdefined(memo327159,n),for(i=1,#xs,mapput(memo327159,xs[i],0)); return(0))); if(n==orgn,v = length(xs); for(i=1,v,mapput(memo327159,xs[i],v)), v = 0; mapput(memo327159,orgn,v)); (v)));
    k=0; n=0; while(k<=1001, n++; if(t=A327159(n), k++; print(n," -> ",t); write("b327157.txt", k," ", n)));

A097034 Initial values for iteration of the function f(x) = A063919(x) such that the iteration ends in a 14-cycle, i.e., in A097030.

Original entry on oeis.org

1506, 1518, 1806, 1902, 1914, 1938, 1950, 2226, 2382, 2394, 2406, 2418, 2478, 2826, 2910, 2946, 2958, 3234, 3282, 3294, 3330, 3510, 3522, 3534, 3546, 3582, 3642, 3654, 3774, 3906, 3954, 3966, 3978, 4146, 4158, 4194, 4434, 4446, 4854, 4866, 4878, 5262
Offset: 1

Views

Author

Labos Elemer, Aug 30 2004

Keywords

Examples

			n=1506 is here because its iteration list = {1506, 1518, 1938, 2382, 2394, 2406, [2418, ...., 3582, 2418}. After a transient of length 6, the iteration ends in a cycle of length 14.
		

Crossrefs

Programs

  • Mathematica
    a063919[1] = 1; (* function a[] in A063919 by Jean-François Alcover *)
    a063919[n_] :=
     Total[Select[Divisors[n], GCD[#, n/#] == 1 &]] - n /; n > 1
    a097034Q[k_] :=
     Module[{iter = NestWhileList[a063919, k, UnsameQ, All]},
      Apply[Subtract, Reverse[Flatten[Position[iter, Last[iter]], 1]]] ==
       14]
    a097034[n_] := Select[Range[n], a097034Q]
    a097034[5262] (* Hartmut F. W. Hoft, Jan 25 2024 *)

A319917 Unitary sociable numbers of order six.

Original entry on oeis.org

698130, 698310, 698490, 712710, 712890, 713070, 341354790, 348612390, 391662810, 406468314, 411838938, 519891750, 530946330, 582129630, 596171970, 621549630, 717175170, 740700270, 740700450, 743324934, 838902150, 919121658, 1009954170, 1343332998
Offset: 1

Views

Author

Michel Marcus, Oct 01 2018

Keywords

Comments

Note that the first 6 terms and the next 6 terms form two sociable groups. But then the next 12 terms belong to two distinct sociable groups.

Crossrefs

Cf. A063919 (sum of proper unitary divisors).
Cf. A002827 (unitary perfect), A063991 (unitary amicable).
Cf. A319902 (order 4), A097024 (order 5), A097030 (order 14).

Programs

  • PARI
    f(n) = sumdiv(n, d, if(gcd(d, n/d)==1, d)) - n;
    isok6(n) = iferr(f(f(f(f(f(f(n)))))) == n, E, 0);
    isok3(n) = iferr(f(f(f(n))) == n, E, 0);
    isok2(n) = iferr(f(f(n)) == n, E, 0);
    isok1(n) = iferr(f(n) == n, E, 0);
    isok(n) = isok6(n) && !isok1(n) && !isok2(n) && !isok3(n);
    
  • PARI
    A063919(n) = my(f = factor(n)); prod(i = 1, #f~, f[i, 1]^f[i, 2] + 1) - n
    is(n) = my(c = n); for(i = 1, 5, c = A063919(c); if(c == 1 || c == n, return(0))); c = A063919(c); c == n \\ David A. Corneth, Oct 01 2018

A327159 Size of the cycle containing n in the map x -> usigma(x)-x or 0 if n is not a member of any finite cycle. Here usigma is the sum of unitary divisors of n (A034448).

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Antti Karttunen, Aug 28 2019

Keywords

Examples

			Because A034460(6) = 6, a(6) = 1.
Because A034460(30) = 42, A034460(42) = 54, A034460(54) = 30, a(30) = a(42) = a(54) = 3.
Because A034460(90) = 90, a(90) = 1. Because A034460(78) = 90, a(78) = 0, as even though 78 ends into a cycle of one, it itself is not a part of that cycle.
		

Crossrefs

Cf. A002827 (positions of ones), A063991 (of 2's), A319902 (of 4's), A097024 (of 5's), A319917 (of 6's), A319937 (of 10's), A097030 (of 14's), A327157 (of all nonzero terms).

Programs

  • Mathematica
    a034460[0] = 0; (* avoids dividing by 0 when an iteration reaches 0 *)
    a034460[n_] := Total[Select[Divisors[n], GCD[#, n/#] == 1 &]] - n /; n > 0
    cycleL[k_] := Module[{nL=NestWhileList[a034460, k, UnsameQ, All]}, If[k==Last[nL], Length[nL]-1, 0]]
    a327159[n_] := Map[cycleL, Range[n]]
    a327159[120] (* Hartmut F. W. Hoft, Feb 04 2024 *)
  • PARI
    A034460(n) = (sumdivmult(n, d, if(gcd(d, n/d)==1, d))-n); \\ From A034460
    A327159(n,orgn=n,xs=Set([])) = if(1==n,0,if(vecsearch(xs,n), if(n==orgn,length(xs),0), xs = setunion([n],xs); A327159(A034460(n),orgn,xs)));

A098186 If f[x]=(sum of unitary-proper divisors of x)=A063919[x] is iterated, the iteration may lead to a fixed point which is either 0 or belongs to A002827, a unitary-perfect-number >1: 6,60,90,87360... Sequence gives initial values for which the iteration ends in 87360, the 4th unitary perfect number.

Original entry on oeis.org

87360, 232608, 356640, 465144, 527712, 565728, 713208, 1018248, 1055352, 1211352, 1240032, 1303728, 1316904, 1352568, 1357584, 1360416, 1379280, 1550472, 1690440, 1835592, 2035608, 2078328, 2110632, 2262892, 2422632
Offset: 1

Views

Author

Labos Elemer, Aug 31 2004

Keywords

Examples

			Iteration list started from n=1018248: {1018248, 1055352, 527712, 232608, 87360, 87360...}
		

Crossrefs

Programs

  • Mathematica
    di[x_] :=Divisors[x];ta={{0}}; ud[x_] :=Part[di[x], Flatten[Position[GCD[di[x], Reverse[di[x]]], 1]]]; asu[x_] :=Apply[Plus, ud[x]]-x; nsf[x_, ho_] :=NestList[asu, x, ho] Do[g=n;s=Last[NestList[asu, n, 100]];If[Equal[s, 87360], Print[{n, s}]; ta=Append[ta, n]], {n, 1, 5000000}];ta = Delete[ta, 1]

A319937 Unitary sociable numbers of order 10.

Original entry on oeis.org

525150234, 527787366, 528544218, 553128198, 612951066, 675192294, 735821562, 982674438, 998151162, 998151174, 5251502340, 5277873660, 5285442180, 5531281980, 6129510660, 6751922940, 7358215620, 9826744380, 9981511620, 9981511740
Offset: 1

Views

Author

Michel Marcus, Oct 02 2018

Keywords

Crossrefs

Cf. A063919 (sum of proper unitary divisors).
Cf. A002827 (unitary perfect), A063991 (unitary amicable).
Cf. A097024 (order 5), A319917 (order 6), A097030 (order 14).

Programs

  • PARI
    f(n) = sumdiv(n, d, if(gcd(d, n/d)==1, d)) - n;
    isok10(n) = iferr(f(f(f(f(f(f(f(f(f(f(n)))))))))) == n, E, 0);
    isok5(n) = iferr(f(f(f(f(f(n))))) == n, E, 0);
    isok2(n) = iferr(f(f(n)) == n, E, 0);
    isok1(n) = iferr(f(n) == n, E, 0);
    isok(n) = isok10(n) && !isok1(n) && !isok2(n) && !isok5(n);

A098188 Irregular triangle with 4 columns which contains in each row the members of a 4-cycle under the map x->A063919(x), iteration of summing the proper-unitary divisors.

Original entry on oeis.org

263820, 263940, 280380, 280500, 395730, 395910, 420570, 420750, 172459210, 218725430, 272130250, 218628662, 209524210, 246667790, 231439570, 230143790, 384121920, 384296640, 408233280, 408408000
Offset: 1

Views

Author

Labos Elemer, Sep 02 2004

Keywords

Comments

Initial values attracted by this sequence are in A098187.
The iteration of this function also contains 2-cycles like 114->126->114... or 1140 -> 1260 ->1140,... or 3-cycles like 30->42->54->30->....

Examples

			The first line represents the 4-cycle  280500->263820->263940->280380->280500->...,
The second line represents the 4-cycle 420750->395730->395910->420570->420750->..
		

Crossrefs

Cf. A319902 (where the terms are entered by increasing value).

Extensions

More terms from Michel Marcus, Oct 05 2018
Previous Showing 11-20 of 23 results. Next