A343669
Number of partitions of an n-set without blocks of size 9.
Original entry on oeis.org
1, 1, 2, 5, 15, 52, 203, 877, 4140, 21146, 115965, 678460, 4212497, 27633712, 190795218, 1381942530, 10470109267, 82764226404, 681048663329, 5822029128397, 51610194855972, 473631475252041, 4492967510009533, 43996047374513046, 444151309687221889, 4617189912288741028
Offset: 0
-
a:= proc(n) option remember; `if`(n=0, 1, add(
`if`(j=9, 0, a(n-j)*binomial(n-1, j-1)), j=1..n))
end:
seq(a(n), n=0..25); # Alois P. Heinz, Apr 25 2021
-
nmax = 25; CoefficientList[Series[Exp[Exp[x] - 1 - x^9/9!], {x, 0, nmax}], x] Range[0, nmax]!
Table[n! Sum[(-1)^k BellB[n - 9 k]/((n - 9 k)! k! (9!)^k), {k, 0, Floor[n/9]}], {n, 0, 25}]
a[n_] := a[n] = If[n == 0, 1, Sum[If[k == 9, 0, Binomial[n - 1, k - 1] a[n - k]], {k, 1, n}]]; Table[a[n], {n, 0, 25}]
A327885
Number of set partitions of [n] such that at least one of the block sizes is 2.
Original entry on oeis.org
0, 0, 1, 3, 9, 35, 150, 672, 3269, 17271, 97155, 578985, 3654750, 24331320, 170074177, 1244911605, 9520843575, 75890001665, 629104453236, 5413637745144, 48277814341765, 445463898405225, 4246785220234557, 41775507558584283, 423516880995944532
Offset: 0
a(2) = 1: 12.
a(3) = 3: 12|3, 13|2, 1|23.
a(4) = 9: 12|34, 12|3|4, 13|24, 13|2|4, 14|23, 1|23|4, 14|2|3, 1|24|3, 1|2|34.
a(5) = 35: 123|45, 124|35, 125|34, 12|345, 12|34|5, 12|35|4, 12|3|45, 12|3|4|5, 134|25, 135|24, 13|245, 13|24|5, 13|25|4, 13|2|45, 13|2|4|5, 145|23, 14|235, 14|23|5, 15|234, 15|23|4, 1|23|45, 1|23|4|5, 14|25|3, 14|2|35, 14|2|3|5, 15|24|3, 1|24|35, 1|24|3|5, 15|2|34, 1|25|34, 1|2|34|5, 15|2|3|4, 1|25|3|4, 1|2|35|4, 1|2|3|45.
-
b:= proc(n, k) option remember; `if`(n=0, 1, add(
`if`(j=k, 0, b(n-j, k)*binomial(n-1, j-1)), j=1..n))
end:
a:= n-> b(n, 0)-b(n, 2):
seq(a(n), n=0..27);
-
b[n_, k_] := b[n, k] = If[n == 0, 1, Sum[If[j == k, 0, b[n - j, k]* Binomial[n - 1, j - 1]], {j, n}]];
a[n_] := b[n, 0] - b[n, 2];
a /@ Range[0, 27] (* Jean-François Alcover, May 04 2020, after Maple *)
A364450
Number of partitions of [n] without prime sized blocks.
Original entry on oeis.org
1, 1, 1, 1, 2, 6, 17, 43, 135, 536, 2262, 9109, 40119, 198069, 1057149, 5656915, 31937212, 191032078, 1218669125, 7948119483, 54117500635, 381631039690, 2828205076600, 21507011811289, 169880627954541, 1377653319819302, 11620433411120653, 100417638302823210
Offset: 0
-
a:= proc(n) option remember; `if`(n=0, 1, add(`if`(
isprime(j), 0, a(n-j)*binomial(n-1, j-1)), j=1..n))
end:
seq(a(n), n=0..30);
A113237
E.g.f.: exp(x*(1 - x^3 + x^4)/(1-x)).
Original entry on oeis.org
1, 1, 3, 13, 49, 381, 2971, 26713, 291873, 3262969, 41245651, 569262981, 8433896593, 136060620853, 2342471665899, 42987065380561, 838321137046081, 17272648375895793, 375413770580941603, 8579701021461918589, 205637099039964274161, 5158188565847339152621
Offset: 0
-
a:= proc(n) option remember; `if`(n=0, 1, add(
`if`(j=4, 0, a(n-j)*binomial(n-1, j-1)*j!), j=1..n))
end:
seq(a(n), n=0..30); # Alois P. Heinz, May 10 2016
-
f[n_] := n!*Sum[(-1)^k*LaguerreL[n - 4*k, -1, -1]/k!, {k, 0, Floor[n/4]}]; Table[ f[n], {n, 0, 19}]
Range[0, 19]!* CoefficientList[ Series[ Exp[x*(1 - x^3 + x^4)/(1 - x)], {x, 0, 19}], x] (* Robert G. Wilson v, Oct 21 2005 *)
A124498
Triangle read by rows: T(n,k) is the number of set partitions of the set {1,2,...,n} containing k blocks of size 2 (0 <= k <= floor(n/2)).
Original entry on oeis.org
1, 1, 1, 1, 2, 3, 6, 6, 3, 17, 20, 15, 53, 90, 45, 15, 205, 357, 210, 105, 871, 1484, 1260, 420, 105, 3876, 7380, 6426, 2520, 945, 18820, 39195, 33390, 18900, 4725, 945, 99585, 213180, 202950, 117810, 34650, 10395, 558847, 1242120, 1293435, 734580, 311850
Offset: 0
T(4,1)=6 because we have 12|3|4, 13|2|4, 14|2|3, 1|23|4, 1|24|3 and 1|2|34.
Triangle T(n,k) begins:
: 1;
: 1;
: 1, 1;
: 2, 3;
: 6, 6, 3;
: 17, 20, 15;
: 53, 90, 45, 15;
: 205, 357, 210, 105;
: 871, 1484, 1260, 420, 105;
: 3876, 7380, 6426, 2520, 945;
: 18820, 39195, 33390, 18900, 4725, 945;
: 99585, 213180, 202950, 117810, 34650, 10395;
: 558847, 1242120, 1293435, 734580, 311850, 62370, 10395;
-
G:=exp(exp(z)-1+(t-1)*z^2/2): Gser:=simplify(series(G,z=0,16)): for n from 0 to 13 do P[n]:=sort(n!*coeff(Gser,z,n)) od: for n from 0 to 13 do seq(coeff(P[n],t,k),k=0..floor(n/2)) od; # yields sequence in triangular form
# second Maple program:
with(combinat):
b:= proc(n, i) option remember; expand(`if`(n=0, 1,
`if`(i<1, 0, add(multinomial(n, n-i*j, i$j)/j!*
b(n-i*j, i-1)*`if`(i=2, x^j, 1), j=0..n/i))))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2)):
seq(T(n), n=0..15); # Alois P. Heinz, Mar 08 2015
-
d=Exp[Exp[x]-x^2/2!-1]; f[list_] := Select[list,#>0&]; Map[f, Transpose[Table[Range[0,12]! CoefficientList[Series[ x^(2k)/(k! 2!^k) *d, {x,0,12}], x], {k,0,5}]]]//Flatten (* Geoffrey Critzer, Nov 30 2011 *)
A337062
E.g.f.: exp(1 + x^2/2 - exp(x)).
Original entry on oeis.org
1, -1, 1, -2, 4, -7, 21, -51, 113, -498, 1088, -3335, 21407, -14653, 232389, -1275288, -3636526, -44468245, -7468609, 700603965, 12178055777, 67189448344, 175549544778, -2432123216941, -36279392911507, -287078642854853, -945866835928323
Offset: 0
-
nmax = 26; CoefficientList[Series[Exp[1 + x^2/2 - Exp[x]], {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = -a[n - 1] - Sum[Binomial[n - 1, k - 1] a[n - k], {k, 3, n}]; Table[a[n], {n, 0, 26}]
Table[Sum[Binomial[n, 2 k] (2 k - 1)!! BellB[n - 2 k, -1], {k, 0, Floor[n/2]}], {n, 0, 26}]
A343671
Number of partitions of an n-set without blocks of size 10.
Original entry on oeis.org
1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115974, 678559, 4213465, 27643007, 190884307, 1382802389, 10478516523, 82847813908, 681895648039, 5830788687491, 51702731250650, 474630475600569, 4503991075480297, 44120379612630694, 445584481578266277, 4634070027874688433
Offset: 0
Cf.
A000110,
A000296,
A027344,
A097514,
A124504,
A343664,
A343665,
A343666,
A343667,
A343668,
A343669.
-
a:= proc(n) option remember; `if`(n=0, 1, add(`if`(
j=10, 0, a(n-j)*binomial(n-1, j-1)), j=1..n))
end:
seq(a(n), n=0..25); # Alois P. Heinz, Jul 25 2023
-
nmax = 25; CoefficientList[Series[Exp[Exp[x] - 1 - x^10/10!], {x, 0, nmax}], x] Range[0, nmax]!
Table[n! Sum[(-1)^k BellB[n - 10 k]/((n - 10 k)! k! (10!)^k), {k, 0, Floor[n/10]}], {n, 0, 25}]
a[n_] := a[n] = If[n == 0, 1, Sum[If[k == 10, 0, Binomial[n - 1, k - 1] a[n - k]], {k, 1, n}]]; Table[a[n], {n, 0, 25}]
A346271
Sum_{n>=0} a(n) * x^n / (n!)^2 = exp( BesselI(0,2*sqrt(x)) - 1 - x^2 / 4 ).
Original entry on oeis.org
1, 1, 2, 7, 41, 346, 3807, 53747, 952275, 20362552, 515112983, 15277888693, 523304644304, 20415373547609, 900219731675981, 44533809102813206, 2451041479421900803, 149140880201760643360, 9982798939295116151967, 731215136812226462200109, 58333374310397488522052976
Offset: 0
-
nmax = 20; CoefficientList[Series[Exp[BesselI[0, 2 Sqrt[x]] - 1 - x^2/4], {x, 0, nmax}], x] Range[0, nmax]!^2
a[0] = 1; a[n_] := a[n] = n a[n - 1] + (1/n) Sum[Binomial[n, k]^2 k a[n - k], {k, 3, n}]; Table[a[n], {n, 0, 20}]
A360991
Expansion of e.g.f. exp(exp(x) - 1 + x^2/2).
Original entry on oeis.org
1, 1, 3, 8, 30, 117, 533, 2599, 13919, 79620, 487810, 3167265, 21744187, 157020697, 1189321019, 9417789650, 77774264012, 668233623419, 5961395449795, 55117233908411, 527263186773227, 5210880621612366, 53130216638022540, 558176360466846439
Offset: 0
Comments