cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 46 results. Next

A134312 A097806 * A134309.

Original entry on oeis.org

1, 1, 1, 0, 1, 2, 0, 0, 2, 4, 0, 0, 0, 4, 8, 0, 0, 0, 0, 8, 16, 0, 0, 0, 0, 0, 16, 32, 0, 0, 0, 0, 0, 0, 32, 64
Offset: 0

Views

Author

Gary W. Adamson, Oct 19 2007

Keywords

Comments

Examples

			First few rows of the triangle:
  1;
  1, 1;
  0, 1, 2;
  0, 0, 2, 4;
  0, 0, 0, 4, 8;
  0, 0, 0, 0, 8, 16;
  ...
		

Crossrefs

Formula

A097806 * A134309 as infinite lower triangular matrices, where A097806 = the pairwise operator. Infinite lower triangular matrix with (1, 1, 2, 4, 8, 16, ...) in the main and subdiagonals.

A167366 Triangle read by rows, 2*A047999 - A097806 (signed) = twice Sierpinski's gasket - the signed pair sum operator.

Original entry on oeis.org

1, 3, 1, 2, 1, 1, 2, 2, 3, 1, 2, 0, 0, 1, 1, 2, 2, 0, 0, 3, 1, 2, 0, 2, 0, 2, 1, 1, 2, 2, 2, 2, 2, 2, 3, 1, 2, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 0, 0, 0, 0, 0, 0, 3, 1, 2, 0, 2, 0, 0, 0, 0, 0, 2, 1, 1, 2, 2, 2, 2, 0, 0, 0, 0, 2, 2, 3, 1, 2, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 1, 1
Offset: 0

Views

Author

Gary W. Adamson & Mats Granvik, Nov 01 2009

Keywords

Comments

Row sums = A167275: (1, 4, 4, 8, 4, 8, 8, 16,...).

Examples

			First few rows of the triangle =
1;
3, 1;
2, 1, 1;
2, 2, 3, 1;
2, 0, 0, 1, 1;
2, 2, 0, 0, 3, 1;
2, 0, 2, 0, 2, 1, 1;
2, 2, 2, 2, 2, 2, 3, 1;
2, 0, 0, 0, 0, 0, 0, 1, 1;
2, 2, 0, 0, 0, 0, 0, 0, 3, 1;
2, 0, 2, 0, 0, 0, 0, 0, 2, 1, 1;
2, 2, 2, 2, 0, 0, 0, 0, 2, 2, 3, 1;
2, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 1, 1;
2, 2, 0, 0, 2, 2, 0, 0, 2, 2, 0, 0, 3, 1;
2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 1, 1;
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 1;
2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1;
2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 1;
2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 1;
2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 3, 1;
...
		

Crossrefs

Formula

Triangle read by rows, 2*A047999 - A096806, the pair sum operator.
A096806 is signed, rightmost diagonal = (+,+,+,...); adjacent diagonal is
signed (-,-,-,...).

A122908 A central binomial scaling of the Riordan array (1+x,x) (A097806).

Original entry on oeis.org

1, 1, 1, 0, 1, 2, 0, 0, 2, 3, 0, 0, 0, 3, 6, 0, 0, 0, 0, 6, 10, 0, 0, 0, 0, 0, 10, 20, 0, 0, 0, 0, 0, 0, 20, 35, 0, 0, 0, 0, 0, 0, 0, 35, 70, 0, 0, 0, 0, 0, 0, 0, 0, 70, 126, 0, 0, 0, 0, 0, 0, 0, 0, 0, 126, 252
Offset: 0

Views

Author

Paul Barry, Sep 18 2006

Keywords

Comments

Row sums are A050168. Diagonal sums are A001045 doubled. Row sums of inverse are 1/C(2n,n) aerated. Applications to other sequences are obvious.

Examples

			Triangle begins
.1,
.1, 1,
.0, 1, 2,
.0, 0, 2, 3,
.0, 0, 0, 3, 6,
.0, 0, 0, 0, 6, 10,
.0, 0, 0, 0, 0, 10, 20,
.0, 0, 0, 0, 0, 0, 20, 35,
.0, 0, 0, 0, 0, 0, 0, 35, 70,
.0, 0, 0, 0, 0, 0, 0, 0, 70, 126,
.0, 0, 0, 0, 0, 0, 0, 0, 0, 126, 252
		

Formula

Number triangle T(n,k)=C(k,floor(k/2))*sum{j=0..n, (-1)^(n-j)C(n,j)C(j+1,k+1)}

A128151 A002260 * A097806.

Original entry on oeis.org

1, 3, 2, 3, 5, 3, 3, 5, 7, 4, 3, 5, 7, 9, 5, 3, 5, 7, 9, 11, 6, 3, 5, 7, 9, 11, 13, 7, 3, 5, 7, 9, 11, 13, 15, 8, 3, 5, 7, 9, 11, 13, 15, 17, 9, 3, 5, 7, 9, 11, 13, 15, 17, 19, 10
Offset: 1

Views

Author

Gary W. Adamson, Feb 16 2007

Keywords

Comments

Row sums = A028387: (1, 5, 11, 19, 29, 41, ...).

Examples

			First few rows of the triangle:
  1;
  3, 2;
  3, 5, 3;
  3, 5, 7, 4;
  3, 5, 7, 9, 5;
  ...
		

Crossrefs

Formula

A002260 * A097806 as infinite lower triangular matrices. a(1) = 1; n-th row has (n-1) terms in the sequence (3, 5, 7, 9, ...) followed by "n".

A128185 A097806 * A051731.

Original entry on oeis.org

1, 2, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 0, 1, 1, 2, 1, 1, 0, 1, 1, 2, 1, 1, 0, 0, 1, 1, 2, 1, 0, 1, 0, 0, 1, 1, 2, 1, 1, 1, 0, 0, 0, 1, 1, 2, 1, 1, 0, 1, 0, 0, 0, 1, 1
Offset: 1

Views

Author

Gary W. Adamson, Feb 17 2007

Keywords

Comments

A128184 = A051731 * A097806 Row sums = 1, 3, 4, 5, 5, 6, 6, 6, 7, 7, ... (the first 10 terms of A108852).

Examples

			First few rows of the triangle:
  1;
  2, 1;
  2, 1, 1;
  2, 1, 1, 1;
  2, 1, 0, 1, 1;
  2, 1, 1, 0, 1, 1;
  2, 1, 1, 0, 0, 1, 1;
  2, 1, 0, 1, 0, 0, 1, 1;
  ...
		

Crossrefs

Formula

A097806 * A051731 as infinite lower triangular matrices.

A130453 A097806 * A059268.

Original entry on oeis.org

1, 2, 2, 2, 4, 4, 2, 4, 8, 8, 2, 4, 8, 16, 16, 2, 4, 8, 16, 32, 32, 2, 4, 8, 16, 32, 64, 64, 2, 4, 8, 16, 32, 64, 128, 128
Offset: 1

Views

Author

Gary W. Adamson, May 26 2007

Keywords

Comments

Row sums = A033484: (1, 4, 10, 22, 46, 94, ...).

Examples

			First few rows of the triangle:
  1;
  2, 2;
  2, 4, 4;
  2, 4, 8,  8;
  2, 4, 8, 16, 16;
  2, 4, 8, 16, 32, 32;
  ...
		

Crossrefs

Formula

A097806 * A059268 as infinite lower triangular matrices.

A131398 3*A007318 - A097806 - A000012.

Original entry on oeis.org

1, 1, 1, 2, 4, 1, 2, 8, 7, 1, 2, 11, 17, 10, 1, 2, 14, 29, 29, 13, 1, 2, 17, 44, 59, 44, 16, 1, 2, 20, 62, 104, 104, 62, 19, 1, 2, 23, 83, 167, 209, 167, 83, 22, 1, 2, 26, 107, 251, 377, 377, 251, 107, 25, 1
Offset: 0

Views

Author

Gary W. Adamson, Jul 05 2007

Keywords

Comments

Row sums = A077802, (1, 2, 7, 18, 41, 88,...).

Examples

			First few rows of the triangle are:
1;
1, 1;
2, 4, 1;
2, 8, 7, 1;
2, 11, 17, 10, 1;
2, 14, 29, 29, 13, 1;
...
		

Crossrefs

Formula

3*A007318 - A097806 - A000012 as infinite lower triangular matrices.

A133807 A007318 * (A097806 + A133566 - I), where I is the identity matrix.

Original entry on oeis.org

1, 2, 1, 3, 4, 1, 4, 9, 4, 1, 5, 16, 10, 6, 1, 6, 25, 20, 20, 6, 1, 7, 36, 35, 50, 21, 8, 1, 8, 49, 56, 105, 56, 35, 8, 1, 9, 64, 84, 196, 126, 112, 36, 10, 1, 10, 81, 120, 336, 252, 294, 120, 54, 10, 1
Offset: 1

Views

Author

Gary W. Adamson, Sep 23 2007

Keywords

Comments

Row sums = A133806: (1, 3, 8, 18, 38, 78, 158, ...).

Examples

			First few rows of the triangle:
  1;
  2,  1;
  3,  4,  1;
  4,  9,  4,  1;
  5, 16, 10,  6,  1;
  6, 25, 20, 20,  6,  1;
  7, 36, 35, 50, 21,  8,  1;
  ...
		

Crossrefs

Formula

Binomial transform of matrix M, where M = (A097806 + A133566 - I) = triangle with (1,1,1,...) in the main diagonal, (1,2,1,2,1,...) in the subdiagonal and the rest zeros. I = Identity matrix.

A046854 Triangle read by rows: T(n, k) = binomial(floor((n+k)/2), k), n >= k >= 0.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 1, 3, 3, 4, 1, 1, 1, 3, 6, 4, 5, 1, 1, 1, 4, 6, 10, 5, 6, 1, 1, 1, 4, 10, 10, 15, 6, 7, 1, 1, 1, 5, 10, 20, 15, 21, 7, 8, 1, 1, 1, 5, 15, 20, 35, 21, 28, 8, 9, 1, 1, 1, 6, 15, 35, 35, 56, 28, 36, 9, 10, 1, 1, 1, 6, 21, 35, 70, 56, 84, 36, 45, 10, 11, 1, 1
Offset: 0

Views

Author

Keywords

Comments

Row sums are Fibonacci(n+2). Diagonal sums are A016116. - Paul Barry, Jul 07 2004
Riordan array (1/(1-x), x/(1-x^2)). Matrix inverse is A106180. - Paul Barry, Apr 24 2005
As an infinite lower triangular matrix * [1,2,3,...] = A055244. - Gary W. Adamson, Dec 23 2008
From Emeric Deutsch, Jun 18 2010: (Start)
T(n,k) is the number of alternating parity increasing subsequences of {1,2,...,n} of size k, starting with an odd number (Terquem's problem, see the Riordan reference, p. 17). Example: T(8,5)=6 because we have 12345, 12347, 12367, 12567, 14567, and 34567.
T(n,k) is the number of alternating parity increasing subsequences of {1,2,...,n,n+1} of size k, starting with an even number. Example: T(7,4)=5 because we have 2345, 2347, 2367, 2567, and 4567. (End)
From L. Edson Jeffery, Mar 01 2011: (Start)
This triangle can be constructed as follows. Interlace two copies of the table of binomial coefficients to get the preliminary table
1
1
1 1
1 1
1 2 1
1 2 1
1 3 3 1
1 3 3 1
...,
then shift each entire r-th column up r rows, r=0,1,2,.... Also, a signed version of this sequence (A187660 in tabular form) begins with
1;
1, -1;
1, -1, -1;
1, -2, -1, 1;
1, -2, -3, 1, 1;
...
(compare with A066170, A130777). Let T(N,k) denote the k-th entry in row N of the signed table. Then, for N>1, row N gives the coefficients of the characteristic function p_N(x) = Sum_{k=0..N} T(N,k)*x^(N-k) = 0 of the N X N matrix U_N=[(0 ... 0 1);(0 ... 0 1 1);...;(0 1 ... 1);(1 ... 1)]. Now let Q_r(t) be a polynomial with recurrence relation Q_r(t)=t*Q_(r-1)(t)-Q_(r-2)(t) (r>1), with Q_0(t)=1 and Q_1(t)=t. Then p_N(x)=0 has solutions Q_(N-1)(phi_j), where phi_j=2*(-1)^(j-1)*cos(j*Pi/(2*N+1)), j=1,2,...,N.
For example, row N=3 is {1,-2,-1,1}, giving the coefficients of the characteristic function p_3(x) = x^3-2*x^2-x+1 = 0 for the 3 X 3 matrix U_3=[(0 0 1);(0 1 1);(1 1 1)], with eigenvalues Q_2(phi_j)=[2*(-1)^(j-1)*cos(j*Pi/7)]^2-1, j=1,2,3. (End)
Given the signed polynomials (+--++--,...) of the triangle, the largest root of the n-th row polynomial is the longest (2n+1) regular polygon diagonal length, with edge = 1. Example: the largest root to x^3 - 2x^2 - x + 1 = 0 is 2.24697...; the longest heptagon diagonal, sin(3*Pi/7)/sin(Pi/7). - Gary W. Adamson, Sep 06 2011
Given the signed polynomials from Gary W. Adamson's comment, the largest root of the n-th polynomial also equals the length from the center to a corner (vertex) of a regular 2*(2*n+1)-sided polygon with side (edge) length = 1. - L. Edson Jeffery, Jan 01 2012
Put f(x,0) = 1 and f(x,n) = x + 1/f(x,n-1). Then f(x,n) = u(x,n)/v(x,n), where u(x,n) and v(x,n) are polynomials. The flattened triangles of coefficients of u and v are both essentially A046854, as indicated by the Mathematica program headed "Polynomials". - Clark Kimberling, Oct 12 2014
From Jeremy Dover, Jun 07 2016: (Start)
T(n,k) is the number of binary strings of length n+1 starting with 0 that have exactly k pairs of consecutive 0's and no pairs of consecutive 1's.
T(n,k) is the number of binary strings of length n+2 starting with 1 that have exactly k pairs of consecutive 0's and no pairs of consecutive 1's. (End)

Examples

			Triangle begins:
  1;
  1 1;
  1 1 1;
  1 2 1 1;
  1 2 3 1 1;
  1 3 3 4 1 1;
  ...
		

References

  • J. Riordan, An Introduction to Combinatorial Analysis, Princeton University Press, 1978. [Emeric Deutsch, Jun 18 2010]

Crossrefs

Reflected version of A065941, which is considered the main entry. A deficient version is in A030111.
Cf. A055244. - Gary W. Adamson, Dec 23 2008

Programs

  • GAP
    Flat(List([0..16], n-> List([0..n], k-> Binomial(Int((n+k)/2), k) ))); # G. C. Greubel, Jul 13 2019
  • Haskell
    a046854 n k = a046854_tabl !! n !! k
    a046854_row n = a046854_tabl !! n
    a046854_tabl = [1] : f [1] [1,1] where
       f us vs = vs : f vs  (zipWith (+) (us ++ [0,0]) ([0] ++ vs))
    -- Reinhard Zumkeller, Apr 24 2013
    
  • Magma
    [Binomial(Floor((n+k)/2), k): k in [0..n], n in [0..16]]; // G. C. Greubel, Jul 13 2019
    
  • Maple
    A046854:= proc(n,k): binomial(floor(n/2+k/2), k) end: seq(seq(A046854(n,k),k=0..n),n=0..16); # Nathaniel Johnston, Jun 30 2011
  • Mathematica
    Table[Binomial[Floor[(n+k)/2], k], {n,0,16}, {k,0,n}]//Flatten
    (* next program: Polynomials *)
    z = 12; f[x_, n_] := x + 1/f[x, n - 1]; f[x_, 1] = 1;
    t = Table[Factor[f[x, n]], {n, 1, z}]
    u = Flatten[CoefficientList[Numerator[t], x]] (* this sequence *)
    v = Flatten[CoefficientList[Denominator[t], x]]
    (* Clark Kimberling, Oct 13 2014 *)
  • PARI
    T(n,k) = binomial((n+k)\2, k); \\ G. C. Greubel, Jul 13 2019
    
  • Sage
    [[binomial(floor((n+k)/2), k) for k in (0..n)] for n in (0..16)] # G. C. Greubel, Jul 13 2019
    

Formula

T(n,k) = binomial(floor((n+k)/2), k).
G.f.: (1+x)/(1-x*y-x^2). - Ralf Stephan, Feb 13 2005
Triangle = A097806 * A168561, as infinite lower triangular matrices. - Gary W. Adamson, Oct 28 2007
T(n,k) = A065941(n,n-k) = abs(A130777(n,k)) = abs(A066170(n,k)) = abs(A187660(n,k)). - Johannes W. Meijer, Aug 08 2011
For n > 1: T(n, k) = T(n-1, k-1) + T(n-2, k), 0 < k < n-1. - Reinhard Zumkeller, Apr 24 2013
T(n,k) = A168561(n,k) + A168561(n-1,k). - R. J. Mathar, Feb 10 2024

A029653 Numbers in (2,1)-Pascal triangle (by row).

Original entry on oeis.org

1, 2, 1, 2, 3, 1, 2, 5, 4, 1, 2, 7, 9, 5, 1, 2, 9, 16, 14, 6, 1, 2, 11, 25, 30, 20, 7, 1, 2, 13, 36, 55, 50, 27, 8, 1, 2, 15, 49, 91, 105, 77, 35, 9, 1, 2, 17, 64, 140, 196, 182, 112, 44, 10, 1, 2, 19, 81, 204, 336, 378, 294, 156, 54, 11, 1, 2, 21, 100, 285
Offset: 0

Views

Author

Keywords

Comments

Reverse of A029635. Row sums are A003945. Diagonal sums are Fibonacci(n+2) = Sum_{k=0..floor(n/2)} (2n-3k)*C(n-k,n-2k)/(n-k). - Paul Barry, Jan 30 2005
Riordan array ((1+x)/(1-x), x/(1-x)). The signed triangle (-1)^(n-k)T(n,k) or ((1-x)/(1+x), x/(1+x)) is the inverse of A055248. Row sums are A003945. Diagonal sums are F(n+2). - Paul Barry, Feb 03 2005
Row sums = A003945: (1, 3, 6, 12, 24, 48, 96, ...) = (1, 3, 7, 15, 31, 63, 127, ...) - (0, 0, 1, 3, 7, 15, 31, ...); where (1, 3, 7, 15, ...) = A000225. - Gary W. Adamson, Apr 22 2007
Triangle T(n,k), read by rows, given by (2,-1,0,0,0,0,0,0,0,...) DELTA (1,0,0,0,0,0,0,0,0,...) where DELTA is the operator defined in A084938. - Philippe Deléham, Nov 17 2011
A029653 is jointly generated with A208510 as an array of coefficients of polynomials v(n,x): initially, u(1,x)=v(1,x)=1; for n>1, u(n,x)=u(n-1,x)+x*v(n-1)x and v(n,x)=u(n-1,x)+x*v(n-1,x)+1. See the Mathematica section. - Clark Kimberling, Feb 28 2012
For a closed-form formula for arbitrary left and right borders of Pascal like triangle, see A228196. - Boris Putievskiy, Aug 18 2013
For a closed-form formula for generalized Pascal's triangle, see A228576. - Boris Putievskiy, Sep 04 2013
The n-th row polynomial is (2 + x)*(1 + x)^(n-1) for n >= 1. More generally, the n-th row polynomial of the Riordan array ( (1-a*x)/(1-b*x), x/(1-b*x) ) is (b - a + x)*(b + x)^(n-1) for n >= 1. - Peter Bala, Feb 25 2018

Examples

			The triangle T(n,k) begins:
n\k 0  1  2   3   4   5   6   7  8  9 10 ...
0:  1
1:  2  1
2:  2  3  1
3:  2  5  4   1
4:  2  7  9   5   1
5:  2  9 16  14   6   1
6:  2 11 25  30  20   7   1
7:  2 13 36  55  50  27   8   1
8:  2 15 49  91 105  77  35   9  1
9:  2 17 64 140 196 182 112  44 10  1
10: 2 19 81 204 336 378 294 156 54 11  1
... Reformatted. - _Wolfdieter Lang_, Jan 09 2015
With the array M(k) as defined in the Formula section, the infinite product M(0)*M(1)*M(2)*... begins
/1        \/1         \/1        \      /1        \
|2 1      ||0 1       ||0 1      |      |2 1      |
|2 1 1    ||0 2 1     ||0 0 1    |... = |2 3 1    |
|2 1 1 1  ||0 2 1 1   ||0 0 2 1  |      |2 5 4 1  |
|2 1 1 1 1||0 2 1 1 1 ||0 0 2 1 1|      |2 7 9 5 1|
|...      ||...       ||...      |      |...      |
- _Peter Bala_, Dec 27 2014
		

References

  • Boris A. Bondarenko, Generalized Pascal Triangles and Pyramids (in Russian), FAN, Tashkent, 1990, ISBN 5-648-00738-8.

Crossrefs

(d, 1) Pascal triangles: A007318(d=1), A093560(3), A093561(4), A093562(5), A093563(6), A093564(7), A093565(8), A093644(9), A093645(10).

Programs

  • Haskell
    a029653 n k = a029653_tabl !! n !! k
    a029653_row n = a029653_tabl !! n
    a029653_tabl = [1] : iterate
                   (\xs -> zipWith (+) ([0] ++ xs) (xs ++ [0])) [2, 1]
    -- Reinhard Zumkeller, Dec 16 2013
    
  • Maple
    A029653 :=  proc(n,k)
    if n = 0 then
      1;
    else
      binomial(n-1, k)+binomial(n, k)
    fi
    end proc: # R. J. Mathar, Jun 30 2013
  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := u[n - 1, x] + x*v[n - 1, x];
    v[n_, x_] := u[n - 1, x] + x*v[n - 1, x] + 1;
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]  (* A208510 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]  (* A029653 *)
    (* Clark Kimberling, Feb 28 2012 *)
  • Python
    from sympy import Poly
    from sympy.abc import x
    def u(n, x): return 1 if n==1 else u(n - 1, x) + x*v(n - 1, x)
    def v(n, x): return 1 if n==1 else u(n - 1, x) + x*v(n - 1, x) + 1
    def a(n): return Poly(v(n, x), x).all_coeffs()[::-1]
    for n in range(1, 13): print(a(n)) # Indranil Ghosh, May 27 2017
    
  • Python
    from math import comb, isqrt
    def A029653(n): return comb(r:=(m:=isqrt(k:=n+1<<1))-(k<=m*(m+1)),a:=n-comb(r+1,2))*((r<<1)-a)//r if n else 1 # Chai Wah Wu, Nov 12 2024

Formula

T(n, k) = C(n-2, k-1) + C(n-2, k) + C(n-1, k-1) + C(n-1, k) except for n=0.
G.f.: (1 + x + y + xy)/(1 - y - xy). - Ralf Stephan, May 17 2004
T(n, k) = (2n-k)*binomial(n, n-k)/n, n, k > 0. - Paul Barry, Jan 30 2005
Sum_{k=0..n} T(n, k)*x^k gives A003945-A003954 for x = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. - Philippe Deléham, Jul 10 2005
T(n, k) = C(n-1, k) + C(n, k). - Philippe Deléham, Jul 10 2005
Equals A097806 * A007318, i.e., the pairwise operator * Pascal's Triangle as infinite lower triangular matrices. - Gary W. Adamson, Apr 22 2007
From Peter Bala, Dec 27 2014: (Start)
exp(x) * e.g.f. for row n = e.g.f. for diagonal n. For example, for n = 3 we have exp(x)*(2 + 5*x + 4*x^2/2! + x^3/3!) = 2 + 7*x + 16*x^2/2! + 30*x^3/3! + 50*x^4/4! + .... The same property holds more generally for Riordan arrays of the form ( f(x), x/(1 - x) ).
Let M denote the lower unit triangular array with 1's on the main diagonal and 1's everywhere else below the main diagonal except for the first column which consists of the sequence [1,2,2,2,...]. For k = 0,1,2,... define M(k) to be the lower unit triangular block array
/I_k 0\
\ 0 M/ having the k X k identity matrix I_k as the upper left block; in particular, M(0) = M. Then the present triangle equals the infinite product M(0)*M(1)*M(2)*... (which is clearly well-defined). See the Example section. (End)

Extensions

More terms from James Sellers
Previous Showing 21-30 of 46 results. Next