cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A261797 Expansion of Product_{k>=1} (1-x^(3*k))*(1-x^(5*k))/(1-x^k).

Original entry on oeis.org

1, 1, 2, 2, 4, 4, 6, 7, 11, 12, 16, 19, 25, 29, 37, 43, 55, 63, 78, 90, 110, 127, 153, 176, 211, 242, 286, 328, 386, 441, 515, 586, 682, 775, 895, 1016, 1169, 1323, 1514, 1711, 1953, 2201, 2502, 2815, 3191, 3582, 4048, 4536, 5113, 5719, 6429, 7179, 8052
Offset: 0

Views

Author

Vaclav Kotesovec, Sep 01 2015

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=80; CoefficientList[Series[Product[(1-x^(3*k))*(1-x^(5*k))/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(Pi*sqrt(14*n/5)/3) / sqrt(30*n).

A275633 Andrews's shadow difference function D_3(q).

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 3, 4, 7, 10, 16, 20, 31, 41, 56, 74, 101, 129, 172, 219, 284, 363, 464, 581, 738, 924, 1155, 1435, 1785, 2199, 2717, 3332, 4084, 4987, 6076, 7375, 8949, 10817, 13051, 15706, 18877, 22622, 27078, 32332, 38545, 45870, 54496, 64618, 76525, 90463, 106788, 125863, 148145, 174106
Offset: 0

Views

Author

N. J. A. Sloane, Aug 09 2016

Keywords

Comments

Agrees with A237833 just for n <= 21.

Crossrefs

Programs

  • Maple
    F:=(a,q,n)->mul(1-a*q^i,i=0..n-1); # This is (a;q)_n
    M:=15;
    # A098151:
    THETA3:=(add((-1)^n*q^(3*n^2),n=-M..M)) /(add((-1)^n*q^(n^2),n=-M..M));
    s1:=series(THETA3,q,80); seriestolist(%);
    # A275632:
    THETABAR3:=1+2*add( (F(q,q,n-1)*q^(n^2)) / (F(q^n,q,n)*(1-q^n)), n=1..M);
    s2:=series(THETABAR3,q,80); seriestolist(%);
    # A275633:
    series((s1-s2)/8,q,80); seriestolist(%);

Formula

Equals (A098151-A275632)/8.

A100823 G.f.: Product_{k>0} (1+x^k)/((1-x^k)*(1+x^(3k))*(1+x^(5k))).

Original entry on oeis.org

1, 2, 4, 7, 12, 19, 30, 46, 69, 101, 146, 208, 293, 408, 563, 768, 1040, 1397, 1864, 2470, 3254, 4261, 5550, 7192, 9277, 11911, 15229, 19391, 24597, 31085, 39150, 49142, 61489, 76702, 95401, 118324, 146362, 180573, 222226, 272826, 334173, 408394, 498022
Offset: 0

Views

Author

Noureddine Chair, Jan 06 2005

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 2*x + 4*x^2 + 7*x^3 + 12*x^4 + 19*x^5 + 30*x^6 + 46*x^7 + ...
G.f. = q^-1 + 2*q^2 + 4*q^5 + 7*q^8 + 12*q^11 + 19*q^14 + 30*q^17 + 46*q^20 + ...
		

Crossrefs

Programs

  • Maple
    series(product((1+x^k)/((1-x^k)*(1+x^(3*k))*(1+x^(5*k))),k=1..100),x=0,100);
  • Mathematica
    CoefficientList[ Series[ Product[(1 + x^k)/((1 - x^k)*(1 + x^(3k))*(1 + x^(5k))), {k, 100}], {x, 0, 45}], x] (* Robert G. Wilson v, Jan 12 2005 *)
    nmax = 50; CoefficientList[Series[Product[(1+x^(5*k-1))*(1+x^(5*k-2))*(1+x^(5*k-3))*(1+x^(5*k-4)) / ((1-x^(6*k))*(1-x^(3*k-1))*(1-x^(3*k-2))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 01 2015 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ x^3, x^6] QPochhammer[ x^5, x^10] / EllipticTheta[ 4, 0, x], {x, 0, n}]; (* Michael Somos, Mar 07 2016 *)
  • PARI
    q='q+O('q^33); E(k)=eta(q^k);
    Vec( (E(2)*E(3)*E(5)) / (E(1)^2*E(6)*E(10)) ) \\ Joerg Arndt, Sep 01 2015

Formula

a(n) ~ exp(Pi*sqrt(37*n/5)/3) * sqrt(37) / (12*sqrt(5)*n). - Vaclav Kotesovec, Sep 01 2015
G.f.: (E(2)*E(3)*E(5)) / (E(1)^2*E(6)*E(10)) where E(k) = prod(n>=1, 1-q^k ). - Joerg Arndt, Sep 01 2015
Euler transform of period 30 sequence [ 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 0, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, ...]. - Michael Somos, Mar 07 2016
Expansion of chi(-x^3) * chi(-x^5) / phi(-x) in powers of x where phi(), chi() are Ramanujan theta functions. - Michael Somos, Mar 07 2016
a(n) - A035939(2*n + 1) = A122129(2*n + 1). - Michael Somos, Mar 07 2016

Extensions

More terms from Robert G. Wilson v, Jan 12 2005
Offset corrected by Vaclav Kotesovec, Sep 01 2015
a(14) = 563 <- 562 corrected by Vaclav Kotesovec, Sep 01 2015

A101230 Number of partitions of 2n in which both odd parts and parts that are multiples of 3 occur with even multiplicities. There is no restriction on the other even parts.

Original entry on oeis.org

1, 2, 4, 7, 12, 20, 32, 50, 76, 113, 166, 240, 343, 484, 676, 935, 1282, 1744, 2355, 3158, 4208, 5573, 7340, 9616, 12536, 16266, 21012, 27028, 34628, 44196, 56204, 71226, 89964, 113270, 142180, 177948, 222089, 276430, 343172, 424959, 524966
Offset: 0

Views

Author

Noureddine Chair, Dec 16 2004

Keywords

Comments

Note that if a partition of n has odd parts occur with even multiplicities then n must be even. This is the reason for only looking at partitions of 2n. - Michael Somos, Mar 04 2012

Examples

			a(8)=12 because 8 = 4+4 = 4+2+2 = 4+2+1+1 = 4+1+1+1+1 = 3+3+2 = 3+3+1+1 = 2+2+2+2 = 2+2+2+1+1 = 2+2+1+1+1+1 = 2+1+1+1+1+1+1 = 1+1+1+1+1+1+1+1.
1 + 2*x + 4*x^2 + 7*x^3 + 12*x^4 + 20*x^5 + 32*x^6 + 50*x^7 + 76*x^8 + 113*x^9 + ...
1/q + 2*q^7 + 4*q^15 + 7*q^23 + 12*q^31 + 20*q^39 + 32*q^47 + 50*q^55 + 76*q^63 + ...
		

Crossrefs

Programs

  • Maple
    series(product((1+x^k)/((1-x^k)*(1+x^(3*k))),k=1..100),x=0,100);
  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1+x^(3*k-1))*(1+x^(3*k-2)) / (1-x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 01 2015 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^3 + A) / (eta(x + A)^2 * eta(x^6 + A)), n))} /* Michael Somos, Mar 04 2012 */

Formula

G.f.: product_{k>0}(1+x^k)/((1-x^k)(1+x^(3k)))= Theta_4(0, x^3)/theta(0, x)1/product_{k>0}(1-x^(3k)).
Euler transform of period 6 sequence [2, 1, 1, 1, 2, 1, ...]. - Vladeta Jovovic, Dec 17 2004
Expansion of q^(1/8) * eta(q^2) * eta(q^3) / (eta(q)^2 * eta(q^6)) in powers of q. - Michael Somos, Mar 04 2012
Convolution inverse of A089812. - Michael Somos, Mar 04 2012
Convolution product of A000041 and A003105. - Michael Somos, Mar 04 2012
a(n) ~ exp(2*Pi*sqrt(2*n)/3) / (6*n). - Vaclav Kotesovec, Sep 01 2015

A103260 Number of partitions of 2n prime to 3 with all odd parts occurring with multiplicity 2. The even parts occur with multiplicity 1.

Original entry on oeis.org

1, 2, 2, 2, 2, 4, 6, 8, 10, 10, 12, 16, 22, 28, 32, 36, 42, 52, 66, 80, 92, 104, 120, 144, 174, 206, 236, 266, 304, 356, 420, 488, 554, 624, 708, 816, 946, 1084, 1224, 1372, 1548, 1764, 2016, 2288, 2568, 2868, 3216, 3632, 4110, 4626, 5166, 5748, 6412, 7188
Offset: 0

Views

Author

Noureddine Chair, Feb 15 2005

Keywords

Comments

Convolution of A098884 and A003105. [corrected by Vaclav Kotesovec, Feb 07 2021]
Also equal to the number of overpartitions of n into parts congruent to 1 or 5 modulo 6. - Jeremy Lovejoy, Nov 28 2024

Examples

			E.g. a(7)=8 because 14=10+4=10+2+1+1=8+4+2=8+4+1+1=7+7=5+5+4=5+5+2+1+1.
		

Crossrefs

Programs

  • Maple
    series(product(((1+x^(6*k-1))*(1+x^(6*k-5)))/((1-x^(6*k-1))*(1-x^(6*k-5))),k=1..100),x=0,100);
    # alternative program:
    with(gfun): series( add(x^(n*(3*n-2)), n = -6..6)/add((-1)^n*x^(n*(3*n-2)), n = -6..6), x, 100): seriestolist(%); # Peter Bala, Feb 05 2021
  • Mathematica
    nmax = 50; CoefficientList[Series[Product[((1+x^(6*k-1))*(1+x^(6*k-5)))/((1-x^(6*k-1))*(1-x^(6*k-5))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 01 2015 *)

Formula

G.f.: (Theta_4(0, x^2)*theta_4(0, x^3))/(theta_4(0, x)*theta_4(0, x^(6))) = Product_{k>0}((1+x^(6*k-1))*(1+x^(6*k-5)))/((1-x^(6*k-1))*(1-x^(6*k-5))).
Euler transform of period 12 sequence [2, -1, 0, 0, 2, 0, 2, 0, 0, -1, 2, 0, ...]. - Vladeta Jovovic, Feb 17 2005
a(n) ~ exp(Pi*sqrt(n/3)) / (2^(3/2) * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Sep 01 2015
G.f.: f(x,x^5)/f(-x,-x^5) = ( Sum_{n = -oo..oo} x^(n*(3*n-2)) )/( Sum_{n = -oo..oo} (-1)^n*x^(n*(3*n-2)) ), where f(a,b) = Sum_{n = -oo..oo} a^(n*(n+1)/2)*b^(n*(n-1)/2) is Ramanujan's 2-variable theta function. Cf. A080054 and A098151. - Peter Bala, Feb 05 2021

Extensions

Example corrected by Vaclav Kotesovec, Sep 01 2015

A252706 Expansion of phi(-q) / phi(-q^3) in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, -2, 0, 2, -2, 0, 4, -4, 0, 6, -8, 0, 10, -12, 0, 16, -18, 0, 24, -28, 0, 36, -40, 0, 52, -58, 0, 74, -84, 0, 104, -116, 0, 144, -160, 0, 198, -220, 0, 268, -296, 0, 360, -396, 0, 480, -528, 0, 634, -694, 0, 832, -908, 0, 1084, -1184, 0, 1404, -1528, 0
Offset: 0

Views

Author

Michael Somos, Apr 04 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - 2*q + 2*q^3 - 2*q^4 + 4*q^6 - 4*q^7 + 6*q^9 - 8*q^10 + 10*q^12 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, q] / EllipticTheta[ 4, 0, q^3], {q, 0, n}];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^2 * eta(x^6 + A) / (eta(x^2 + A) * eta(x^3 + A)^2), n))};

Formula

Expansion of f(-q, -q^2) / f(q, q^2) in powers of q where f(,) is Ramanujan's two-variable theta function.
Euler transform of period 6 sequence [ -2, -1, 0, -1, -2, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (24 t)) = 3^(1/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A101195.
G.f.: Product_{k>0} (1 - x^k + x^(2*k)) / (1 + x^k + x^(2*k)).
a(n) = (-1)^n * A139137(n).
Convolution inverse is A098151.
a(3*n + 2) = 0. a(3*n) = A098151(n). a(3*n + 1) = -2 * A097197(n).

A275632 Andrews's 4-shadow function THETA.BAR_3(q).

Original entry on oeis.org

1, 2, 4, 6, 10, 8, 16, 12, 20, 18, 24, 16, 38, 20, 32, 32, 42, 24, 52, 28, 56, 44, 48, 32, 80, 42, 56, 54, 76, 40, 96, 44, 84, 64, 72, 64, 122, 52, 80, 76, 120, 56, 128, 60, 112, 104, 96, 64, 166, 78, 124, 96, 132, 72, 160, 96
Offset: 0

Views

Author

N. J. A. Sloane, Aug 09 2016

Keywords

Crossrefs

Programs

  • Maple
    F:=(a,q,n)->mul(1-a*q^i,i=0..n-1); # This is (a;q)_n
    M:=15;
    # A098151:
    THETA3:=(add((-1)^n*q^(3*n^2),n=-M..M)) /(add((-1)^n*q^(n^2),n=-M..M));
    s1:=series(THETA3,q,80); seriestolist(%);
    # A275632:
    THETABAR3:=1+2*add( (F(q,q,n-1)*q^(n^2)) / (F(q^n,q,n)*(1-q^n)), n=1..M);
    s2:=series(THETABAR3,q,80); seriestolist(%);
    # A275633:
    series((s1-s2)/8,q,80); seriestolist(%);

Formula

See Section 1 of Andrews (2016) or the Maple code below.

A304627 a(n) = [x^n] Product_{k>=1} (1 + x^k)*(1 - x^(n*k))/((1 - x^k)*(1 + x^(n*k))).

Original entry on oeis.org

1, 0, 2, 6, 12, 22, 38, 62, 98, 152, 230, 342, 502, 726, 1038, 1470, 2060, 2862, 3946, 5398, 7334, 9902, 13286, 17726, 23526, 31064, 40822, 53406, 69566, 90246, 116622, 150142, 192610, 246254, 313806, 398638, 504884, 637590, 802934, 1008446, 1263270, 1578526, 1967694, 2447062
Offset: 0

Views

Author

Ilya Gutkovskiy, May 15 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[(1 + x^k) (1 - x^(n k))/((1 - x^k) (1 + x^(n k))) , {k, 1, n}], {x, 0, n}], {n, 0, 43}]
    Table[SeriesCoefficient[Product[(1 + x^k)/(1 - x^k), {k, 1, n - 1}], {x, 0, n}], {n, 0, 43}]
    Join[{1}, Table[SeriesCoefficient[EllipticTheta[4, 0, x^n]/EllipticTheta[4, 0, x], {x, 0, n}], {n, 43}]]
    nmax = 43; CoefficientList[Series[1/EllipticTheta[4, 0, x] - 2 x/(1 - x), {x, 0, nmax}], x]

Formula

G.f.: 1/theta_4(x) - 2*x/(1 - x), where theta_4() is the Jacobi theta function.
a(n) ~ exp(Pi*sqrt(n)) / (8*n). - Vaclav Kotesovec, May 19 2018

A335754 a(n) is the number of overpartitions of n where overlined parts are not divisible by 3 and non-overlined parts are congruent to 1 modulo 3.

Original entry on oeis.org

1, 2, 3, 4, 6, 9, 12, 17, 23, 30, 39, 51, 66, 84, 107, 135, 168, 209, 259, 319, 391, 478, 581, 703, 849, 1022, 1226, 1466, 1748, 2078, 2465, 2917, 3443, 4055, 4765, 5588, 6540, 7640, 8908, 10368, 12047, 13973, 16182, 18712, 21604, 24906, 28673, 32964, 37846, 43397
Offset: 0

Views

Author

Jeremy Lovejoy, Jun 20 2020

Keywords

Examples

			The 9 overpartitions counted by a(5) are: [5'], [4,1], [4,1'], [4',1], [4',1'], [2',1,1,1], [2',1',1,1], [1,1,1,1,1], [1',1,1,1,1].
		

Crossrefs

Programs

  • Mathematica
    nmax = 60; CoefficientList[Series[Product[(1 + x^(3*k-1)) * (1 + x^(3*k-2)) / (1 - x^(3*k-2)), {k, 1, nmax/3}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jan 14 2021 *)

Formula

G.f.: Product_{n>=1} (1+q^(3*n-1))*(1+q^(3*n-2))/(1-q^(3*n-2)).
a(n) ~ Gamma(1/3) * exp(2*Pi*sqrt(n)/3) / (2^(3/2) * sqrt(3) * Pi^(2/3) * n^(2/3)). - Vaclav Kotesovec, Jan 14 2021

A335755 a(n) is the number of overpartitions of n where overlined parts are not divisible by 3 and non-overlined parts are congruent to 2 modulo 3.

Original entry on oeis.org

1, 1, 2, 2, 3, 5, 6, 9, 11, 14, 19, 24, 31, 39, 48, 61, 75, 93, 114, 139, 169, 205, 248, 298, 358, 428, 510, 607, 719, 851, 1005, 1182, 1389, 1628, 1904, 2225, 2592, 3015, 3501, 4058, 4698, 5429, 6264, 7216, 8302, 9538, 10944, 12541, 14351, 16403
Offset: 0

Views

Author

Jeremy Lovejoy, Jun 20 2020

Keywords

Examples

			The 6 overpartitions counted by a(6) are: [5,1'], [5',1'], [4',2], [4',2'], [2,2,2], [2',2,2].
		

Crossrefs

Programs

  • Mathematica
    nmax = 60; CoefficientList[Series[Product[(1 + x^(3*k-1)) * (1 + x^(3*k-2)) / (1 - x^(3*k-1)), {k, 1, nmax/3}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jan 14 2021 *)

Formula

G.f.: Product_{n>=1} (1+q^(3*n-1))*(1+q^(3*n-2))/(1-q^(3*n-1)).
a(n) ~ Pi^(2/3) * exp(2*Pi*sqrt(n)/3) / (3*sqrt(2)*Gamma(1/3)*n^(5/6)). - Vaclav Kotesovec, Jan 14 2021
Previous Showing 11-20 of 20 results.