A152056
a(n) = ((9+sqrt(3))^n + (9-sqrt(3))^n)/2.
Original entry on oeis.org
1, 9, 84, 810, 8028, 81324, 837648, 8734392, 91882512, 972602640, 10340011584, 110257202592, 1178108743104, 12605895573696, 135013638364416, 1446985635811200, 15514677652177152, 166399318145915136
Offset: 0
Al Hakanson (hawkuu(AT)gmail.com), Nov 22 2008
A152107
a(n) = ((6+sqrt(5))^n+(6-sqrt(5))^n)/2.
Original entry on oeis.org
1, 6, 41, 306, 2401, 19326, 157481, 1290666, 10606081, 87262326, 718359401, 5915180706, 48713027041, 401185722606, 3304124833001, 27212740595226, 224125017319681, 1845905249384166, 15202987455699881, 125212786737489426
Offset: 0
Al Hakanson (hawkuu(AT)gmail.com), Nov 24 2008
For n=3, (6+sqrt(5))^3 = 216 + 108*sqrt(5) + 18*5 + 5*sqrt(5) = 306 + 113*sqrt(5) and (6-sqrt(5))^3 = 306 - 113*sqrt(5), so a(3) = (306 + 113*sqrt(5) + 306 - 113*sqrt(5))/2 = 306. - _Michael B. Porter_, Aug 25 2016
-
Z:= PolynomialRing(Integers()); N:=NumberField(x^2-5); S:=[ ((6+r5)^n+(6-r5)^n)/2: n in [0..19] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Nov 26 2008
-
f:= gfun:-rectoproc({a(n)=12*a(n-1)-31*a(n-2),a(0)=1,a(1)=6},a(n),remember):
map(f, [$0..50]); # Robert Israel, Aug 25 2016
-
CoefficientList[Series[(1 - 6 x)/(1 - 12 x + 31 x^2), {x, 0, 19}], x] (* Michael De Vlieger, Aug 25 2016 *)
LinearRecurrence[{12,-31},{1,6},30] (* Harvey P. Dale, Aug 28 2024 *)
Typo in name corrected by
J. Conrad, Aug 24 2016
A152108
a(n) = ((7+sqrt(5))^n + (7-sqrt(5))^n)/2.
Original entry on oeis.org
1, 7, 54, 448, 3896, 34832, 316224, 2894528, 26609536, 245174272, 2261620224, 20875015168, 192738922496, 1779844247552, 16437306875904, 151809149370368, 1402086588645376, 12949609668739072, 119602725461950464, 1104655331042787328, 10202654714273202176
Offset: 0
Al Hakanson (hawkuu(AT)gmail.com), Nov 24 2008
-
Z:= PolynomialRing(Integers()); N:=NumberField(x^2-5); S:=[ ((7+r5)^n+(7-r5)^n)/2: n in [0..18] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Nov 26 2008
-
I:=[1,7]; [n le 2 select I[n] else 14*Self(n-1)-44*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Feb 04 2018
-
With[{srt5=Sqrt[5]},Simplify/@Table[((7+srt5)^n+(7-srt5)^n)/2,{n,0,20}]] (* or *) LinearRecurrence[{14,-44},{1,7},20] (* Harvey P. Dale, Jan 16 2012 *)
CoefficientList[Series[(1 - 7 x) / (1 - 14 x + 44 x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 04 2018 *)
A152109
a(n) = ((8+sqrt(5))^n + (8-sqrt(5))^n)/2.
Original entry on oeis.org
1, 8, 69, 632, 6041, 59368, 593469, 5992792, 60870001, 620345288, 6334194549, 64746740792, 662230374281, 6775628281768, 69338460425709, 709653298187032, 7263483605875681, 74346193100976008, 760993556868950949
Offset: 0
Al Hakanson (hawkuu(AT)gmail.com), Nov 24 2008
-
Z:= PolynomialRing(Integers()); N:=NumberField(x^2-5); S:=[ ((8+r5)^n+(8-r5)^n)/2: n in [0..18] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Nov 26 2008
-
LinearRecurrence[{16,-59},{1,8},30] (* Harvey P. Dale, Dec 18 2011 *)
A152429
a(n) = (11^n + 5^n)/2.
Original entry on oeis.org
1, 8, 73, 728, 7633, 82088, 893593, 9782648, 107374753, 1179950408, 12973595113, 142680249368, 1569336258673, 17261966423528, 189877968549433, 2088639343496888, 22974941225731393, 252723895719373448
Offset: 0
-
List([0..20], n-> (11^n+5^n)/2); # G. C. Greubel, Jan 08 2020
-
[(11^n+5^n)/2: n in [0..20]]; // Vincenzo Librandi, Jun 01 2011
-
seq( (11^n+5^n)/2, n=0..20); # G. C. Greubel, Jan 08 2020
-
LinearRecurrence[{16,-55}, {1,8}, 20] (* G. C. Greubel, Jan 08 2020 *)
-
vector(21, n, (11^(n-1) + 5^(n-1))/2 ) \\ G. C. Greubel, Jan 08 2020
-
[(11^n+5^n)/2 for n in (0..20)] # G. C. Greubel, Jan 08 2020
A147688
a(n) = ((6 + sqrt(8))^n + (6 - sqrt(8))^n)/2.
Original entry on oeis.org
1, 6, 44, 360, 3088, 26976, 237248, 2091648, 18456832, 162915840, 1438198784, 12696741888, 112091336704, 989587267584, 8736489783296, 77129433907200, 680931492954112, 6011553766047744, 53072563389857792, 468547255228956672
Offset: 0
Al Hakanson (hawkuu(AT)gmail.com), Nov 10 2008
-
Z:= PolynomialRing(Integers()); N:=NumberField(x^2-8); S:=[ ((6+r8)^n+(6-r8)^n)/2: n in [0..19] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Nov 13 2008
-
LinearRecurrence[{12,-28},{1,6},30] (* Harvey P. Dale, Apr 23 2011 *)
A152105
a(n) = (10^n + 6^n)/2.
Original entry on oeis.org
1, 8, 68, 608, 5648, 53888, 523328, 5139968, 50839808, 505038848, 5030233088, 50181398528, 501088391168, 5006530347008, 50039182082048, 500235092492288, 5001410554953728, 50008463329722368, 500050779978334208, 5000304679870005248, 50001828079220031488, 500010968475320188928
Offset: 0
Al Hakanson (hawkuu(AT)gmail.com), Nov 24 2008
Comments