cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-29 of 29 results.

A006273 Numerators of a continued fraction for (3+sqrt(13))/2.

Original entry on oeis.org

3, 10, 1297, 2186871697, 10458512317535240383929505297
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

For denominators see A006274.

Programs

  • Maple
    a := proc (n) option remember; if n = 1 then 10 else a(n-1)^3 + 3*a(n-1)^2 - 3 end if; end proc:
    seq(a(n), n = 1..5); # Peter Bala, Jan 19 2022

Formula

From Peter Bala, Jan 19 2022: (Start)
a(n) = (11/2 + 3/2*sqrt(13))^3^(n-1) + (11/2 - 3/2*sqrt(13))^3^(n-1) - 1.
a(1) = 10 and a(n) = a(n-1)^3 + 3*a(n-1)^2 - 3 for n >= 2.
a(1) = 10 and a(n) = 13*(Product_{k = 1..n-1} a(k))^2 - 3 for n >= 2.
a(n) = A006268(n-1)^2 + 1 for n >= 1.
13 - 9*Product_{n = 1..N} (1 + 2/a(n))^2 = 52/(a(N+1) + 3). Therefore
sqrt(13) = 3*(1 + 2/10) * (1 + 2/1297) * (1 + 2/2186871697) * ... The convergence is cubic: the first six factors of the product give sqrt(13) correct to more than 750 decimal places.
3/sqrt(13) = (1 - 2/(10+2)) * (1 - 2/(1297+2)) * (1 - 2/(2186871697+2)) * .... (End)

A186425 Antidiagonal sums of A179748.

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 5, 7, 10, 14, 20, 30, 45, 68, 104, 161, 251, 393, 618, 976, 1547, 2459, 3917, 6251, 9993, 15999, 25647, 41157, 66108, 106272, 170961, 275202, 443250, 714265, 1151486, 1857057, 2995991, 4834907, 7804653, 12601553, 20351114, 32872743, 53107823, 85811996, 138674777, 224130364, 362286475
Offset: 1

Views

Author

Mats Granvik, Feb 21 2011

Keywords

Comments

a(n+1)/a(n) tends to the golden ratio. [Note added by Joerg Arndt, Mar 16 2013: this is only a conjecture so far!]
Grows slower than the Fibonacci sequence. More complicated than the Fibonacci sequence.
The divisibility related table A051731 can be described by the recurrence:
T(n,1) = 1, k > 1: T(n,k) = (Sum_{i=1..k-1} T(n-i,k-1)) - 1*(Sum_{i=1..k-1} T(n-i,k)).
The silver means can be found as limiting ratios of the antidiagonal sums of the tables described by the following similar recurrences:
T(n,1) = 1, k > 1: T(n,k) = (Sum_{i=1..k-1} T(n-i,k-1)) + 0*(Sum_{i=1..k-1} T(n-i,k)). --> antidiagonal sums limiting ratio tends to the golden ratio, A001622.
T(n,1) = 1, k > 1: T(n,k) = (Sum_{i=1..k-1} T(n-i,k-1)) + 1*(Sum_{i=1..k-1} T(n-i,k)). --> antidiagonal sums limiting ratio tends to the silver ratio, A014176.
T(n,1) = 1, k > 1: T(n,k) = (Sum_{i=1..k-1} T(n-i,k-1)) + 2*(Sum_{i=1..k-1} T(n-i,k)). --> antidiagonal sums limiting ratio tends to the bronze ratio, A098316
The limiting ratio becomes apparent after the first 275 terms or so of the antidiagonal sums.
The empirical observation that the ratio a(n+1)/a(n) tends to the golden ratio 1.6180339887498... has been verified up to a(1500)/a(1499) which gives the first 65 digits of A001622. - Mats Granvik, Sep 16 2017

Crossrefs

Cf. A001622, A179748, cumulative sums of A186426.

Programs

  • Mathematica
    Clear[a,t]; nn = 58; t[n_, 1] = 1; t[n_, k_] := t[n, k] = If[n >= k, Sum[t[n - i, k - 1], {i, 1, k - 1}], 0]; a = Table[Total[Table[t[n - k + 1, k], {k, 1, nn}]], {n, 1, nn}]; a (* Mats Granvik, Apr 27 2013 *)

A261540 a(n) = n^7 + 7*n^5 + 14*n^3 + 7*n.

Original entry on oeis.org

0, 29, 478, 4287, 24476, 101785, 337434, 946043, 2333752, 5206581, 10714070, 20633239, 37597908, 65378417, 109216786, 176222355, 275832944, 420346573, 625528782, 911300591, 1302512140, 1829807049, 2530582538, 3450050347, 4642403496, 6172093925, 8115226054
Offset: 0

Views

Author

Raphael Ranna, Aug 24 2015

Keywords

Comments

Also numbers of the form (n-th metallic mean)^7 - 1/(n-th metallic mean)^7, see link to Wikipedia.

Crossrefs

Programs

  • Magma
    [n^7 + 7*n^5 + 14*n^3 + 7*n: n in [0..30]]; // Vincenzo Librandi, Aug 24 2015
    
  • Mathematica
    Table[n^7 + 7 n^5 + 14 n^3 + 7 n, {n, 0, 30}] (* Bruno Berselli, Aug 24 2015 *)
    LinearRecurrence[{8, -28, 56, -70, 56, -28, 8, -1}, {0, 29, 478, 4287, 24476, 101785, 337434, 946043}, 30] (* Vincenzo Librandi, Aug 24 2015 *)
  • PARI
    a(n)=n^7+7*n^5+14*n^3+7*n \\ Charles R Greathouse IV, Aug 24 2015
  • Sage
    [n^7+7*n^5+14*n^3+7*n for n in (0..30)] # Bruno Berselli, Aug 24 2015
    

Formula

a(n) = -a(-n) = ( (n+sqrt(n^2+4))/2 )^7 - 1/( (n+sqrt(n^2+4))/2 )^7.
G.f.: x*(29 + 246*x + 1275*x^2 + 1940*x^3 + 1275*x^4 + 246*x^5 + 29*x^6)/(1 - x)^8. - Bruno Berselli, Aug 24 2015

Extensions

Offset changed from 1 to 0 and initial 0 added by Bruno Berselli, Aug 25 2015

A006274 First differences of A006268.

Original entry on oeis.org

33, 46728, 102266868085272, 1069559300034650646049671038948382825526728
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Extensions

Definition corrected by N. J. A. Sloane, May 23 2023 using a formula suggested by R. J. Mathar, Apr 26 2007.

A117917 a(n) = 3*a(n-1) + a(n-2) + n.

Original entry on oeis.org

1, 4, 15, 52, 175, 582, 1927, 6370, 21045, 69514, 229597, 758316, 2504557, 8272000, 27320571, 90233728, 298021771, 984299058, 3250918963, 10737055966, 35462086881, 117123316630, 386832036793, 1277619427032, 4219690317913
Offset: 0

Views

Author

Gary W. Adamson, Apr 02 2006

Keywords

Comments

a(n)/a(n-1) tends to 3.30277563... = exp(ArcSinh(3/2)) (A098316).

Crossrefs

Cf. A006190.

Programs

  • Magma
    I:=[1,4,15,52]; [n le 4 select I[n] else 5*Self(n-1) -6*Self(n-2) +Self(n-3) +Self(n-4): n in [1..31]]; // G. C. Greubel, Oct 22 2021
    
  • Mathematica
    LinearRecurrence[{5,-6,1,1},{1,4,15,52},30] (* Harvey P. Dale, Mar 21 2018 *)
  • Sage
    [(2*lucas_number1(n+2, 3, -1) + 8*lucas_number1(n+1, 3, -1) - 3*n -5)/9 for n in (0..30)] # G. C. Greubel, Oct 22 2021

Formula

O.g.f.: (1 - x + x^2)/((1-x)^2*(1 - 3*x - x^2)). - R. J. Mathar, Mar 17 2008
a(n) = ( -3*n - 5 + 2*A006190(n) + 14*A006190(n+1) )/9. - R. J. Mathar, Oct 21 2012

Extensions

More terms from R. J. Mathar, Mar 17 2008

A205325 Decimal expansion of the limit of [0;1,1,...] + [0;2,2,...] + ... + [0;n,n,...] - log(n) as n approaches infinity.

Original entry on oeis.org

0, 4, 1, 6, 6, 6, 2, 6, 2, 7, 6, 3, 4, 8, 4, 8, 1, 0, 8, 7, 0, 1, 1, 6, 3, 5, 8, 5, 6, 9, 2, 3, 2, 0, 7, 4, 3, 1, 2, 5, 4, 5, 4, 6, 7, 5, 2, 8, 4, 1, 6, 3, 1, 8, 0, 9, 2, 0, 1, 3, 5, 9, 2, 3, 2, 9, 9, 1, 6, 4, 5, 7, 7, 5, 1, 2, 6, 2, 5, 5, 3, 7, 8, 3, 9, 5, 0, 3
Offset: 0

Views

Author

Martin Janecke, Jan 26 2012

Keywords

Examples

			0.0416662....
		

Crossrefs

Cf. A001620, A205326, continued fractions A001622, A014176, A098316, A098317, A098318.

Programs

  • Mathematica
    digits = 10; dn = 1000000; Clear[f]; f[n_] := NSum[2/(k + Sqrt[k^2+4]) - 1/k, {k, 1, Infinity}, NSumTerms -> 200000, WorkingPrecision -> digits+10, Method -> {"EulerMaclaurin", Method -> {"NIntegrate", "MaxRecursion" -> 20}}] + EulerGamma // RealDigits[#, 10, digits+2]& // First; f[dn]; f[n = 2*dn]; While[f[n] != f[n-dn], n = n+dn]; Prepend[ f[n][[1 ;; digits]], 0] (* Jean-François Alcover, Feb 25 2013 *)

Formula

lim_{n->infinity} (1/[1;1,...] + 1/[2;2,...] + 1/[3;3,...] + ... + 1/[n;n,...] - log(n)).
lim_{n->infinity} (sum_{k=1...n} (2/(k + sqrt(k^2 + 4))) - log(n)).

Extensions

More terms from Jean-François Alcover, Feb 25 2013
More terms from Jon E. Schoenfield, Jan 05 2014

A205326 Decimal expansion of the sum of [0;n,n,n,...]^2 for n=1..infinity.

Original entry on oeis.org

9, 1, 5, 5, 8, 7, 9, 1, 9, 9, 0, 1, 8, 1, 9, 7, 2, 5, 1, 9, 9, 8, 1, 6, 8, 5, 3, 8, 0, 3, 1, 9, 0, 0, 8, 9, 7, 3, 5, 3, 2, 0, 4, 6, 0, 1, 8, 9, 6, 6, 9, 0, 2, 4, 1, 2, 2, 7, 6, 9, 5, 1, 7, 0, 9, 6, 2, 1, 8, 2, 7, 0, 5, 5, 6, 4, 6, 5, 3, 3, 5, 9, 7, 5, 5, 3, 7
Offset: 0

Views

Author

Martin Janecke, Jan 26 2012

Keywords

Comments

This is the total area of all squares with sides parallel to the axes of the Cartesian coordinate system, the lower left vertex at (n,0) and the upper right vertex on f(x)=1/x for n=1..infinity.

Examples

			0.9155879199018197251998168538031900897353...
		

Crossrefs

Cf. A013661, A205325, continued fractions A001622, A014176, A098316, A098317, A098318.

Programs

Formula

Sum_{n>=1} 1/[n;n,n,...]^2.
Sum_{n>=1} 4/(n + sqrt(n^2 + 4))^2.

Extensions

a(-5)-a(-86) from Charles R Greathouse IV, Jan 26 2012

A261574 a(n) = n*(n^2 + 3)*(n^6 + 6*n^4 + 9*n^2 + 3).

Original entry on oeis.org

0, 76, 2786, 46764, 439204, 2744420, 12813606, 48229636, 153992264, 432083484, 1092730090, 2537720636, 5489037036, 11179326964, 21624372014, 40001698260, 71163830416, 122319408236, 203920464114, 330799604044, 523606640180, 810600392196, 1229857906486
Offset: 0

Views

Author

Raphael Ranna, Aug 24 2015

Keywords

Comments

Also numbers of the form (n-th metallic mean)^9 - 1/(n-th metallic mean)^9, see link to Wikipedia.

Crossrefs

Programs

  • Magma
    [n*(n^2+3)*(n^6+6*n^4+9*n^2+3): n in [0..25]]; // Bruno Berselli, Aug 25 2015
  • Mathematica
    Table[n (n^2 + 3) (n^6 + 6 n^4 + 9 n^2 + 3), {n, 0, 25}] (* Bruno Berselli, Aug 25 2015 *)
  • PARI
    concat(0, Vec(2*x*(38*x^8 +1013*x^7 +11162*x^6 +43907*x^5 +69200*x^4 +43907*x^3 +11162*x^2 +1013*x +38) / (x -1)^10 + O(x^50))) \\ Colin Barker, Aug 25 2015
    

Formula

a(n) = -a(-n) = ( (n+sqrt(n^2+4))/2 )^9-1/( (n+sqrt(n^2+4))/2 )^9.
G.f.: 2*x*(38*x^8 +1013*x^7 +11162*x^6 +43907*x^5 +69200*x^4 +43907*x^3 +11162*x^2 +1013*x +38) / (x -1)^10. - Colin Barker, Aug 25 2015

Extensions

Formula in Name by Colin Barker, Aug 25 2015
Offset changed from 1 to 0 and initial 0 added by Bruno Berselli, Aug 25 2015

A351898 Decimal expansion of metallic ratio for N = 14.

Original entry on oeis.org

1, 4, 0, 7, 1, 0, 6, 7, 8, 1, 1, 8, 6, 5, 4, 7, 5, 2, 4, 4, 0, 0, 8, 4, 4, 3, 6, 2, 1, 0, 4, 8, 4, 9, 0, 3, 9, 2, 8, 4, 8, 3, 5, 9, 3, 7, 6, 8, 8, 4, 7, 4, 0, 3, 6, 5, 8, 8, 3, 3, 9, 8, 6, 8, 9, 9, 5, 3, 6, 6, 2, 3, 9, 2, 3, 1, 0, 5, 3, 5, 1, 9, 4, 2, 5, 1, 9
Offset: 2

Views

Author

A.H.M. Smeets, Feb 24 2022

Keywords

Comments

Decimal expansion of continued fraction [14; 14, 14, 14, ...].
Also largest solution of x^2 - 14 x - 1 = 0.
Essentially the same digit sequence as A010503, A157214, A174968 and A268683.
The metallic ratio's for N = A077444(n) are equal to powers of the silver ratio, i.e., A014166^(2n-1); this constant represents the special case for N = A077444(2).

Examples

			14.0710678118654752440084436210484903928483593...
		

Crossrefs

Metallic ratios: A001622 (N=1), A014176 (N=2), A098316 (N=3), A098317 (N=4), A098318 (N=5), A176398 (N=6), A176439 (N=7), A176458 (N=8), A176522 (N=9), A176537 (N=10), A244593 (N=11).

Programs

  • Mathematica
    RealDigits[7 + 5*Sqrt[2], 10, 100][[1]] (* Amiram Eldar, Feb 24 2022 *)
  • PARI
    (1+sqrt(2))^3

Formula

Equals 2 + 5*A014176.
Equals A014176^3.
Equals exp(arcsinh(7)). - Amiram Eldar, Jul 04 2023
Previous Showing 21-29 of 29 results.