cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A100604 Numbers k such that (prime(k)-1)! + prime(k)^3 is prime.

Original entry on oeis.org

2, 3, 4, 28, 894
Offset: 1

Views

Author

Jonathan Vos Post, Nov 30 2004

Keywords

Comments

k = {2, 3, 4, 28} yields primes p(k) = {3, 5, 7, 107}. There are no more such k up to k=100. Verified by Ray Chandler.
a(5) > 600. - Jinyuan Wang, Apr 10 2020
a(6) > 2500. - Michael S. Branicky, Jul 02 2024

Examples

			a(3) = 4 because (prime(4)-1)! + prime(4)^3 = (7-1)! + 7^3 = 720 + 343 = 1063 is the 3rd prime of this form.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[30],PrimeQ[(Prime[#]-1)!+Prime[#]^3]&] (* Harvey P. Dale, Jul 13 2022 *)
  • PARI
    is(k) = ispseudoprime((prime(k)-1)! + prime(k)^3); \\ Jinyuan Wang, Apr 10 2020

Formula

Numbers k such that (prime(k)-1)! + prime(k)^3 is prime, where prime(k) is the k-th prime.

Extensions

a(5) from Michael S. Branicky, Jul 01 2024

A235267 Places n such that 1 + q!/p! is prime, where p = prime(n) and q = prime(n + 1).

Original entry on oeis.org

3, 5, 33, 35, 43, 69, 86, 106, 108, 116, 124, 127, 171, 174, 182, 200, 201, 238, 255, 256, 270, 271, 277, 294, 310, 318, 323, 332, 356, 384, 388, 390, 392, 397, 398, 402, 409, 469, 494, 495, 520, 542, 551, 562, 572, 582, 606, 632, 633, 645, 649, 652, 671, 672
Offset: 1

Views

Author

K. D. Bajpai, Jan 05 2014

Keywords

Examples

			3 is in the sequence because (prime(3)! + prime(4)!)/prime(3)! =  (5! + 7!)/5! = (120 + 5040)/120 =  43 which is prime.
		

Crossrefs

Programs

  • Maple
    isA235267 := proc(n)
        local p,q ;
        p := ithprime(n) ;
        q := nextprime(p) ;
        if isprime(1+q!/p!) then
            true;
        else
            false;
        end if;
    end proc:
    for n from 1 do
        if isA235267(n) then
            print(n) ;
        end if;
    end do:

A235392 Primes of the form (p! + q!)/ p! where p= prime(k) and q= prime(k+1), in order of increasing k.

Original entry on oeis.org

43, 157, 19183, 22651, 37057, 121453, 7923366007441921, 4496830293424385744456428801, 45045561823582321, 412807, 49907098805169447878401, 34672666242568358583785606401, 1041421
Offset: 1

Views

Author

K. D. Bajpai, Jan 09 2014

Keywords

Comments

The 6th term has 6 digits; the 44th term has 44 digits.
The 685th term has 349 digits.

Examples

			43 is in the sequence because (5! + 7!)/ 5! = (120 + 5040)/120 = 43 which is prime and 5 and 7 are consecutive primes.
157 is in the sequence because (11! + 13!)/ 11! = (39916800 + 6227020800)/ 39916800 = 157 which is prime and 11 and 13 are consecutive primes.
		

Crossrefs

Cf. A000040 (prime numbers).
Cf. A100858 (primes:(p-1)! + p).

Programs

  • Maple
    KD := proc() local a,b,d; a:=ithprime(n); b:=ithprime(n+1); d:=(a! + b!)/ a!; if isprime(d) then RETURN (d); fi; end: seq(KD(), n=1..300);
  • Mathematica
    Select[((#[[1]]!+#[[2]]!)/#[[1]]!&/@Partition[Prime[Range[ 300]], 2,1]), PrimeQ] (* Harvey P. Dale, Mar 07 2019 *)

A100603 Numbers k such that (prime(k)-1)! + prime(k)^4 is prime.

Original entry on oeis.org

1, 2, 4, 67, 212, 1615, 2570
Offset: 1

Views

Author

Jonathan Vos Post, Nov 30 2004

Keywords

Comments

k = {1, 2, 4, 67} yields primes p(k) = {2, 3, 7, 331}. There are no more such k up to k=100. Computed in collaboration with Ray Chandler.
Terms a(5) and greater are only probable primes. - Iain Fox, Mar 05 2018

Examples

			a(3) = 4 because (prime(4)-1)! + prime(4)^4 = (7-1)! + 7^4 = 720 + 2401 = 3121 is the 3rd prime of this form.
		

Crossrefs

Cf. A100858.

Programs

  • Mathematica
    lst={};Do[p=Prime[n];If[PrimeQ[(p-1)!+p^4], AppendTo[lst, n]], {n, 10^2}];lst (* Vladimir Joseph Stephan Orlovsky, Sep 08 2008 *)
  • PARI
    is(k) = my(p=prime(k)); ispseudoprime((p-1)! + p^4) \\ Iain Fox, Mar 05 2018

Formula

Numbers k such that (prime(k)-1)! + prime(k)^4 is prime, where prime(k) is the k-th prime.

Extensions

a(5) from Iain Fox, Mar 05 2018
a(6) from Iain Fox, Mar 11 2018
a(7) from Michael S. Branicky, May 29 2025
Previous Showing 11-14 of 14 results.