A069277
16-almost primes (generalization of semiprimes).
Original entry on oeis.org
65536, 98304, 147456, 163840, 221184, 229376, 245760, 331776, 344064, 360448, 368640, 409600, 425984, 497664, 516096, 540672, 552960, 557056, 573440, 614400, 622592, 638976, 746496, 753664, 774144, 802816, 811008, 829440, 835584, 860160
Offset: 1
Sequences listing r-almost primes, that is, the n such that
A001222(n) = r:
A000040 (r = 1),
A001358 (r = 2),
A014612 (r = 3),
A014613 (r = 4),
A014614 (r = 5),
A046306 (r = 6),
A046308 (r = 7),
A046310 (r = 8),
A046312 (r = 9),
A046314 (r = 10),
A069272 (r = 11),
A069273 (r = 12),
A069274 (r = 13),
A069275 (r = 14),
A069276 (r = 15), this sequence (r = 16),
A069278 (r = 17),
A069279 (r = 18),
A069280 (r = 19),
A069281 (r = 20). -
Jason Kimberley, Oct 02 2011
-
Select[Range[300000], Plus @@ Last /@ FactorInteger[ # ] == 16 &] (* Vladimir Joseph Stephan Orlovsky, Apr 23 2008 *)
Select[Range[10^6],PrimeOmega[#]==16&] (* Harvey P. Dale, Jan 30 2015 *)
-
k=16; start=2^k; finish=1000000; v=[]; for(n=start,finish, if(bigomega(n)==k,v=concat(v,n))); v
-
from math import isqrt, prod
from sympy import primerange, integer_nthroot, primepi
def A069277(n):
def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1)))
def f(x): return int(n+x-sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,16)))
def bisection(f,kmin=0,kmax=1):
while f(kmax) > kmax: kmax <<= 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
return bisection(f) # Chai Wah Wu, Aug 31 2024
A101695
a(n) = n-th n-almost prime.
Original entry on oeis.org
2, 6, 18, 40, 108, 224, 480, 1296, 2688, 5632, 11520, 25600, 53248, 124416, 258048, 540672, 1105920, 2228224, 4587520, 9830400, 19922944, 40894464, 95551488, 192937984, 396361728, 822083584, 1660944384, 3397386240, 6845104128
Offset: 1
a(1) = first 1-almost prime = first prime = A000040(1) = 2.
a(2) = 2nd 2-almost prime = 2nd semiprime = A001358(2) = 6.
a(3) = 3rd 3-almost prime = A014612(3) = 18.
a(4) = 4th 4-almost prime = A014613(4) = 40.
a(5) = 5th 5-almost prime = A014614(5) = 108.
Cf.
A000040,
A001358,
A014612,
A014613,
A046314,
A046306,
A046308,
A046310,
A046312,
A046314,
A069272,
A069273,
A069274,
A069275,
A069276,
A069277,
A069278,
A069279,
A069280,
A069281,
A101637,
A101638,
A101605,
A101606.
-
A101695 := proc(n)
local s,a ;
s := 0 ;
for a from 2^n do
if numtheory[bigomega](a) = n then
s := s+1 ;
if s = n then
return a;
end if;
end if;
end do:
end proc: # R. J. Mathar, Aug 09 2012
-
AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[PrimePi[n/Times @@ Prime[Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]]]]]; (* Eric W. Weisstein, Feb 07 2006 *)
AlmostPrime[k_, n_] := Block[{e = Floor[ Log[2, n] + k], a, b}, a = 2^e; Do[b = 2^p; While[ AlmostPrimePi[k, a] < n, a = a + b]; a = a - b/2, {p, e, 0, -1}]; a + b/2]; AlmostPrime[1, 1] = 2; lst = {}; Do[ AppendTo[lst, AlmostPrime[n, n]], {n, 30}]; lst (* Robert G. Wilson v, Oct 07 2007 *)
-
from math import prod, isqrt
from sympy import primerange, primepi, integer_nthroot
def A101695(n):
if n == 1: return 2
def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1)))
def f(x): return int(n-1+x-sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,n)))
kmin, kmax = 1,2
while f(kmax) >= kmax:
kmax <<= 1
while True:
kmid = kmax+kmin>>1
if f(kmid) < kmid:
kmax = kmid
else:
kmin = kmid
if kmax-kmin <= 1:
break
return kmax # Chai Wah Wu, Aug 23 2024
A101696
a(n) = sum(i=1,n)(i-th i-almost prime). Cumulative sums of A101695.
Original entry on oeis.org
2, 8, 26, 66, 174, 398, 878, 2174, 4862, 10494, 22014, 45054, 98302, 222718, 480766, 1021438, 2127358, 4355582, 8943102, 18773502, 38696446, 79590910, 175142398, 368080382, 764442110, 1586525694, 3247470078, 6644856318, 13489960446
Offset: 1
a(1) = first 1-almost prime = first prime = A000040(1) = 2.
a(2) = 2 + 2nd 2-almost prime = 2 + A001358(2) = 2+ 6 = 8.
a(3) = a(2) + 3rd 3-almost prime = 8+A014612(3) = 8+18 = 26.
a(4) = a(3) + 4th 4-almost prime = 26+A014613(4) = 26+40 = 66.
a(5) = a(4) + 5th 5-almost prime = 66+A014614(5) = 66+108=174.
...
a(12) = a(11) + 12th 12-almost prime = 22014 + 23040 = 45054 (the first nontrivial palindrome in the sequence).
Cf.
A000040,
A001358,
A014612,
A014613,
A046314,
A046306,
A046308,
A046310,
A046312,
A046314,
A069272,
A069273,
A069274,
A069275,
A069276,
A069277,
A069278,
A069279,
A069280,
A069281,
A101637,
A101638,
A101605,
A101606,
A101695.
Original entry on oeis.org
2, 12, 216, 8640, 933120, 209018880, 100329062400, 130026464870400, 349511137571635200, 1968446726803449446400, 22676506292775737622528000, 522466704985552994823045120000, 27820307107070725868337506549760000
Offset: 1
a(1) = 2 = prime(1).
a(2) = 12 = 2 * 6 = prime(1) * semiprime(2) = 2^2 * 3.
a(3) = 216 = 2 * 6 * 18 = prime(1) * semiprime(2) * 3-almostprime(3) = 2^3 * 3^3.
a(4) = 8640 = 2 * 6 * 18 * 40 = prime(1) * semiprime(2) * 3-almostprime(3) * 4-almostprime(4) = 2^6 * 3^3 * 5.
a(15) = 893179304874387947794472921245209518407680000 = 2 * 6 * 18 * 40 * 108 * 224 * 480 * 1296 * 2688 * 5632 * 11520 * 23040 * 53248 * 124416 * 258048 = 2^88 * 3^23 * 5^4 * 7^3 * 11 * 13.
Cf.
A000040,
A001358,
A014612,
A014613,
A046314,
A046306,
A046308,
A046310,
A046312,
A046314,
A069272,
A069273,
A069274,
A069275,
A069276,
A069277,
A069278,
A069279,
A069280,
A069281,
A101637,
A101638,
A101605,
A101606,
A101695.
Comments