A138112
a(n)=3a(n-1)-4a(n-2)+2a(n-3)-a(n-4), a(0)=a(1)=a(2)=0, a(3)=1, a(4)=3.
Original entry on oeis.org
0, 0, 0, 1, 3, 5, 5, 0, -13, -34, -55, -55, 0, 144, 377, 610, 610, 0, -1597, -4181, -6765, -6765, 0, 17711, 46368, 75025, 75025, 0, -196418, -514229, -832040, -832040, 0, 2178309, 5702887, 9227465, 9227465, 0, -24157817, -63245986, -102334155, -102334155
Offset: 0
-
CoefficientList[Series[x^3/(1-3x+4x^2-2x^3+x^4),{x,0,45}],x] (* or *) LinearRecurrence[{3,-4,2,-1},{0,0,0,1},45] (* Harvey P. Dale, Jun 22 2011 *)
A134491
a(n) = Fibonacci(5n+4).
Original entry on oeis.org
3, 34, 377, 4181, 46368, 514229, 5702887, 63245986, 701408733, 7778742049, 86267571272, 956722026041, 10610209857723, 117669030460994, 1304969544928657, 14472334024676221, 160500643816367088
Offset: 0
A134489
a(n) = Fibonacci(5*n + 2).
Original entry on oeis.org
1, 13, 144, 1597, 17711, 196418, 2178309, 24157817, 267914296, 2971215073, 32951280099, 365435296162, 4052739537881, 44945570212853, 498454011879264, 5527939700884757, 61305790721611591, 679891637638612258
Offset: 0
Cf.
A000045,
A001906,
A001519,
A033887,
A015448,
A014445,
A033888-
A033891,
A102312,
A099100,
A134490-
A134495,
A103134,
A134497-
A134504.
-
[Fibonacci(5*n+2): n in [0..50]]; // Vincenzo Librandi, Apr 20 2011
-
Table[Fibonacci[5n + 2], {n, 0, 30}]
LinearRecurrence[{11,1},{1,13},20] (* Harvey P. Dale, May 05 2022 *)
A138110
Table T(d,n) read column by column: the n-th term in the sequence of the d-th differences of A138112, d=0..4.
Original entry on oeis.org
0, 0, 0, 1, -1, 0, 0, 1, 0, -1, 0, 1, 1, -1, -1, 1, 2, 0, -2, -1, 3, 2, -2, -3, 0, 5, 0, -5, -3, 3, 5, -5, -8, 0, 8, 0, -13, -8, 8, 13, -13, -21, 0, 21, 13, -34, -21, 21, 34, 0, -55, 0, 55, 34, -34, -55, 55, 89, 0, -89, 0, 144, 89, -89, -144, 144, 233, 0, -233, -144, 377, 233, -233, -377, 0, 610, 0, -610, -377, 377
Offset: 0
All 5 rows of the table T(d,n) are:
.0,.0,.0,.1,.3,.5,.5,..0,-13,-34,-55,-55,...0,.144,...
.0,.0,.1,.2,.2,.0,-5,-13,-21,-21,..0,.55,.144,.233,...
.0,.1,.1,.0,-2,-5,-8,.-8,..0,.21,.55,.89,..89,...0,...
.1,.0,-1,-2,-3,-3,.0,..8,.21,.34,.34,..0,.-89,-233,...
-1,-1,-1,-1,.0,.3,.8,.13,.13,..0,-34,-89,-144,-144,...
A138384
Reverse groups of five Fibonacci numbers.
Original entry on oeis.org
3, 2, 1, 1, 0, 34, 21, 13, 8, 5, 377, 233, 144, 89, 55, 4181, 2584, 1597, 987, 610, 46368, 28657, 17711, 10946, 6765, 514229, 317811, 196418, 121393, 75025, 5702887, 3524578, 2178309, 1346269, 832040, 63245986, 39088169, 24157817, 14930352, 9227465, 701408733
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,11,0,0,0,0,1).
-
With[{nn=10},Flatten[Reverse/@Partition[Fibonacci[Range[0,5*nn-1]],5]]] (* or *) LinearRecurrence[{0,0,0,0,11,0,0,0,0,1},{3,2,1,1,0,34,21,13,8,5},50] (* Harvey P. Dale, Jan 20 2015 *)
A269500
a(n) = Fibonacci(10*n).
Original entry on oeis.org
0, 55, 6765, 832040, 102334155, 12586269025, 1548008755920, 190392490709135, 23416728348467685, 2880067194370816120, 354224848179261915075, 43566776258854844738105, 5358359254990966640871840, 659034621587630041982498215, 81055900096023504197206408605
Offset: 0
Cf. similar sequences of the form Fibonacci(k*n):
A000045 (k = 1),
A001906 (k = 2),
A014445 (k = 3),
A033888 (k = 4),
A102312 (k = 5),
A134492 (k = 6),
A134498 (k = 7),
A138473 (k = 8),
A138590 (k = 9), this sequence (k = 10),
A167398 (k = 11),
A214855 (k = 15).
-
Fibonacci[10Range[0, 14]]
FullSimplify[Table[(((1 + Sqrt[5])/2)^(10 n) - (2/(1 + Sqrt[5]))^(10 n))/Sqrt[5], {n, 0, 12}]]
LinearRecurrence[{123, -1}, {0, 55}, 15]
-
a(n) = fibonacci(10*n); \\ Michel Marcus, Mar 03 2016
-
concat(0, Vec(55*x/(1-123*x+x^2) + O(x^100))) \\ Altug Alkan, Mar 04 2016
A138298
First differences of A137976 after having added two leading ones.
Original entry on oeis.org
0, 2, 10, 21, 110, 233, 1220, 2584, 13530, 28657, 150050, 317811, 1664080, 3524578, 18454930, 39088169, 204668310, 433494437, 2269806340, 4807526976, 25172538050, 53316291173, 279167724890, 591286729879, 3096017511840
Offset: 0
Comments