cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A360634 Number T(n,k) of sets of nonempty words over binary alphabet with a total of n letters of which k are the first letter; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 2, 6, 6, 2, 2, 11, 16, 11, 2, 3, 18, 37, 37, 18, 3, 4, 28, 73, 100, 73, 28, 4, 5, 42, 133, 228, 228, 133, 42, 5, 6, 61, 227, 470, 593, 470, 227, 61, 6, 8, 86, 370, 899, 1370, 1370, 899, 370, 86, 8, 10, 119, 580, 1617, 2894, 3497, 2894, 1617, 580, 119, 10
Offset: 0

Views

Author

Alois P. Heinz, Feb 14 2023

Keywords

Examples

			T(4,0) = 2: {bbbb}, {b,bbb}.
T(4,1) = 11: {abbb}, {babb}, {bbab}, {bbba}, {a,bbb}, {ab,bb}, {abb,b}, {b,bab}, {b,bba}, {ba,bb}, {a,b,bb}.
T(4,2) = 16: {aabb}, {abab}, {abba}, {baab}, {baba}, {bbaa}, {a,abb}, {a,bab}, {a,bba}, {aa,bb}, {aab,b}, {ab,ba}, {aba,b}, {b,baa}, {a,ab,b}, {a,b,ba}.
Triangle T(n,k) begins:
   1;
   1,   1;
   1,   3,   1;
   2,   6,   6,    2;
   2,  11,  16,   11,    2;
   3,  18,  37,   37,   18,    3;
   4,  28,  73,  100,   73,   28,    4;
   5,  42, 133,  228,  228,  133,   42,    5;
   6,  61, 227,  470,  593,  470,  227,   61,   6;
   8,  86, 370,  899, 1370, 1370,  899,  370,  86,   8;
  10, 119, 580, 1617, 2894, 3497, 2894, 1617, 580, 119, 10;
  ...
		

Crossrefs

Columns k=0-2 give: A000009, A095944, A360650.
Row sums give A102866.
T(2n,n) gives A360638.
Cf. A055375 (the same for multisets), A200751, A208741.

Programs

  • Maple
    g:= proc(n, i, j) option remember; expand(`if`(j=0, 1, `if`(i<0, 0, add(
          g(n, i-1, j-k)*x^(i*k)*binomial(binomial(n, i), k), k=0..j))))
        end:
    b:= proc(n, i) option remember; expand(`if`(n=0, 1,
         `if`(i<1, 0, add(b(n-i*j, i-1)*g(i$2, j), j=0..n/i))))
        end:
    T:= (n, k)-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2)):
    seq(T(n), n=0..15);
  • Mathematica
    g[n_, i_, j_] := g[n, i, j] = Expand[If[j == 0, 1, If[i < 0, 0, Sum[g[n, i - 1, j - k]*x^(i*k)*Binomial[Binomial[n, i], k], {k, 0, j}]]]];
    b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, i - 1]*g[i, i, j], {j, 0, n/i}]]]];
    T[n_] := CoefficientList[b[n, n], x];
    Table[T[n], {n, 0, 15}] // Flatten (* Jean-François Alcover, Dec 05 2023, after Alois P. Heinz *)

Formula

T(n,k) = T(n,n-k).
Sum_{k=0..2n} (-1)^k*T(2n,k) = A200751(n). - Alois P. Heinz, Sep 09 2023

A261053 Expansion of Product_{k>=1} (1+x^k)^(k^k).

Original entry on oeis.org

1, 1, 4, 31, 289, 3495, 51268, 891152, 17926913, 409907600, 10499834497, 297793199060, 9262502810645, 313457634240463, 11464902463397642, 450646709610954343, 18943070964019019671, 847932498252050293971, 40266255926484893366914, 2021845081107882645459639
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 08 2015

Keywords

Crossrefs

Programs

  • Magma
    m:=20; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&*[(1+x^k)^(k^k): k in [1..(m+2)]]))); // G. C. Greubel, Nov 08 2018
  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(binomial(i^i, j)*b(n-i*j, i-1), j=0..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..25);  # Alois P. Heinz, Aug 08 2015
  • Mathematica
    nmax=20; CoefficientList[Series[Product[(1+x^k)^(k^k),{k,1,nmax}],{x,0,nmax}],x]
  • PARI
    m=20; x='x+O('x^m); Vec(prod(k=1,m, (1+x^k)^(k^k))) \\ G. C. Greubel, Nov 08 2018
    

Formula

a(n) ~ n^n * (1 + exp(-1)/n + (exp(-1)/2 + 4*exp(-2))/n^2).
G.f.: exp(Sum_{k>=1} ( Sum_{d|k} (-1)^(k/d+1)*d^(d+1) ) * x^k/k). - Ilya Gutkovskiy, Nov 08 2018

A261052 Expansion of Product_{k>=1} (1+x^k)^(k!).

Original entry on oeis.org

1, 1, 2, 8, 31, 157, 915, 6213, 48240, 423398, 4147775, 44882107, 531564195, 6837784087, 94909482330, 1413561537884, 22482554909451, 380269771734265, 6815003300096013, 128992737080703803, 2571218642722865352, 53835084737513866662, 1181222084520177393143
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 08 2015

Keywords

Comments

Weigh transform of the factorial numbers. - Alois P. Heinz, Jun 11 2018

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(binomial(i!, j)*b(n-i*j,i-1), j=0..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..25);  # Alois P. Heinz, Aug 08 2015
  • Mathematica
    nmax=25; CoefficientList[Series[Product[(1+x^k)^(k!),{k,1,nmax}],{x,0,nmax}],x]
  • PARI
    seq(n)={Vec(exp(x*Ser(dirmul(vector(n, n, n!), -vector(n, n, (-1)^n/n)))))} \\ Andrew Howroyd, Jun 22 2018

Formula

a(n) ~ n! * (1 + 1/n + 2/n^2 + 10/n^3 + 57/n^4 + 401/n^5 + 3382/n^6 + 33183/n^7 + 371600/n^8 + 4685547/n^9 + 65792453/n^10).

A261051 Expansion of Product_{k>=1} (1+x^k)^(Lucas(k)).

Original entry on oeis.org

1, 1, 3, 7, 14, 33, 69, 148, 307, 642, 1314, 2684, 5432, 10924, 21841, 43431, 85913, 169170, 331675, 647601, 1259737, 2441706, 4716874, 9083215, 17439308, 33387589, 63749174, 121409236, 230658963, 437198116, 826838637, 1560410267, 2938808875, 5524005110
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 08 2015

Keywords

Crossrefs

Programs

  • Maple
    L:= n-> (<<0|1>, <1|1>>^n. <<2, 1>>)[1, 1]:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
           add(binomial(L(i), j)*b(n-i*j, i-1), j=0..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..50);  # Alois P. Heinz, Aug 08 2015
  • Mathematica
    nmax=40; CoefficientList[Series[Product[(1+x^k)^LucasL[k],{k,1,nmax}],{x,0,nmax}],x]

Formula

a(n) ~ phi^n / (2*sqrt(Pi)*n^(3/4)) * exp(-1 + 1/(2*sqrt(5)) + 2*sqrt(n) + s), where s = Sum_{k>=2} (-1)^(k+1) * (2 + phi^k)/((phi^(2*k) - phi^k - 1)*k) = -0.590290697526802161885355317939144642488927381134222996704542... and phi = A001622 = (1+sqrt(5))/2 is the golden ratio.
G.f.: exp(Sum_{k>=1} (-1)^(k+1)*x^k*(1 + 2*x^k)/(k*(1 - x^k - x^(2*k)))). - Ilya Gutkovskiy, May 30 2018

A216158 The total number of nonempty words in all length n finite languages on an alphabet of two letters.

Original entry on oeis.org

0, 2, 6, 24, 72, 220, 652, 1848, 5160, 14130, 38102, 101296, 266328, 692740, 1785524, 4563888, 11577888, 29170128, 73032808, 181793136, 450100760, 1108868820, 2719167020, 6639085968, 16144137800, 39107596850, 94393612782, 227062741160, 544439640328, 1301446217244
Offset: 0

Views

Author

Geoffrey Critzer, Sep 03 2012

Keywords

Comments

A finite language is a set of distinct words with size being the total number of letters in all words.

Examples

			a(3) = 24 because the sets (languages) are {a,aa}; {a,ab}; {a,ba}; {a,bb}; {b,aa}; {b,ab}; {b,ba}; {b,bb}; {aaa}; {aab}; {aba}; {abb}; {baa}; {bab}; {bba}; {bbb} where the distinct words are separated by commas.
		

Crossrefs

Cf. A102866.

Programs

  • Maple
    h:= proc(n, i) option remember; `if`(n=0, [1, 0], `if`(i<1, 0, add(
          (p-> p+[0, p[1]*j])(binomial(2^i, j)*h(n-i*j, i-1)), j=0..n/i)))
        end:
    a:= n-> h(n$2)[2]:
    seq(a(n), n=0..30);  # Alois P. Heinz, Sep 24 2017
  • Mathematica
    nn=30;p=Product[(1+y x^i)^(2^i),{i,1,nn}];CoefficientList[Series[D[p,y]/.y->1,{x,0,nn}],x]

Formula

a(n) = Sum_{k>0} k * A208741(n,k).

A319919 Expansion of Product_{k>=1} (1 + x^k)^(2^k-1).

Original entry on oeis.org

1, 1, 3, 10, 25, 70, 182, 476, 1220, 3122, 7883, 19794, 49340, 122237, 301114, 737923, 1799597, 4369204, 10563800, 25441377, 61048713, 145988775, 347981713, 826921992, 1959363778, 4629903905, 10911757432, 25652950459, 60165831361, 140792215037, 328750398275, 766041930160, 1781452975346
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 01 2018

Keywords

Comments

Convolution of A081362 and A102866.
Weigh transform of A000225.

Crossrefs

Programs

  • Maple
    a:=series(mul((1+x^k)^(2^k-1),k=1..100),x=0,33): seq(coeff(a,x,n),n=0..32); # Paolo P. Lava, Apr 02 2019
  • Mathematica
    nmax = 32; CoefficientList[Series[Product[(1 + x^k)^(2^k - 1), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 32; CoefficientList[Series[Exp[Sum[(-1)^(k + 1) x^k/(k (1 - x^k) (1 - 2 x^k)), {k, 1, nmax}]], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) d (2^d - 1), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 32}]

Formula

G.f.: exp(Sum_{k>=1} (-1)^(k+1)*x^k/(k*(1 - x^k)*(1 - 2*x^k))).
a(n) ~ c * exp(2*sqrt(n) - 1/2) * 2^(n-1) / (A079555 * sqrt(Pi) * n^(3/4)), where c = exp(Sum_{k>=2} (-1)^(k-1)/(k*(2^(k-1)-1))) = 0.6602994483152065685... - Vaclav Kotesovec, Sep 15 2021

A383073 a(n) = [x^n] Product_{k=1..n} (1 + x^k)^binomial(n,k).

Original entry on oeis.org

1, 1, 2, 11, 69, 552, 5133, 53804, 626440, 7979043, 110074741, 1631532542, 25813521836, 433619035254, 7698641650937, 143908414079881, 2822753485000135, 57930283521990154, 1240695879627856673, 27666701629865989070, 641049490249340264699
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 15 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[(1 + x^k)^Binomial[n, k], {k, 1, n}], {x, 0, n}], {n, 0, 20}]

A305652 Expansion of Product_{k>=1} (1 + x^k)^(2^(k-1)-1).

Original entry on oeis.org

1, 0, 1, 3, 7, 18, 41, 99, 227, 538, 1236, 2872, 6597, 15166, 34669, 79150, 180011, 408616, 925015, 2089607, 4709937, 10595275, 23788174, 53312366, 119271967, 266399612, 594077742, 1322815256, 2941225084, 6530659320, 14481362803, 32070677496, 70937233268, 156721128440
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 07 2018

Keywords

Comments

Weigh transform of A000225, shifted right one place.
Convolution of the sequences A081362 and A098407.

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(binomial(2^(i-1)-1, j)*b(n-i*j, i-1), j=0..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..40);  # Alois P. Heinz, Jun 07 2018
  • Mathematica
    nmax = 33; CoefficientList[Series[Product[(1 + x^k)^(2^(k-1)-1), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 33; CoefficientList[Series[Exp[Sum[(-1)^(k + 1) x^(2 k)/(k (1 - x^k) (1 - 2 x^k)), {k, 1, nmax}]], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) d (2^(d - 1) - 1), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 33}]

Formula

G.f.: Product_{k>=1} (1 + x^k)^A000225(k-1).
G.f.: Product_{k>=1} (1 + x^k)^(A011782(k)-1).
G.f.: exp(Sum_{k>=1} (-1)^(k+1)*x^(2*k)/(k*(1 - x^k)*(1 - 2*x^k))).
a(n) ~ 2^n * exp(sqrt(2*n) - 5/4 + c) / (sqrt(2*Pi) * 2^(3/4) * n^(3/4)), where c = Sum_{k>=2} -(-1)^k / (k*(2^k-1)*(2^k-2)) = -0.07640757130267274170429705262846... - Vaclav Kotesovec, Jun 08 2018

A371482 Expansion of e.g.f. Product_{k>=1} (1 + x^k/k!)^(2^k).

Original entry on oeis.org

1, 2, 6, 32, 164, 1032, 7728, 59376, 522600, 4946768, 49680656, 540031296, 6195155744, 75183755584, 961596510272, 12909563309952, 181305865742240, 2657525771641664, 40594443765953472, 643987597483557888, 10601112599585001984, 180727870834447607808, 3185418524574895953152
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 25 2024

Keywords

Comments

"EGJ" (unordered, element, labeled) transform of powers of 2.

Crossrefs

Programs

  • Mathematica
    nmax = 22; CoefficientList[Series[Product[(1 + x^k/k!)^(2^k), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
Previous Showing 11-19 of 19 results.