cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A349534 G.f. A(x) satisfies A(x) = 1 / ((1 - 3 * x) * (1 - x * A(x)^2)).

Original entry on oeis.org

1, 4, 21, 138, 1063, 9075, 82770, 789204, 7766721, 78267306, 803447526, 8371413999, 88300495746, 941004684748, 10116276976218, 109578418285452, 1194764348642313, 13102287157827918, 144422108994233625, 1599198859915070640, 17780781456147340764
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 21 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; A[] = 0; Do[A[x] = 1/((1 - 3 x) (1 - x A[x]^2)) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    a[n_] := a[n] = 3^n + Sum[Sum[a[i] a[j] a[n - i - j - 1], {j, 0, n - i - 1}], {i, 0, n - 1}]; Table[a[n], {n, 0, 20}]
    Table[Sum[Binomial[n + k, 2 k] Binomial[3 k, k] 3^(n - k)/(2 k + 1), {k, 0, n}], {n, 0, 20}]

Formula

a(n) = 3^n + Sum_{i=0..n-1} Sum_{j=0..n-i-1} a(i) * a(j) * a(n-i-j-1).
a(n) = Sum_{k=0..n} binomial(n+k,2*k) * binomial(3*k,k) * 3^(n-k) / (2*k+1).
a(n) = 3^n*F([1/3, 2/3, -n, 1+n], [1/2, 1, 3/2], -3^2/2^4), where F is the generalized hypergeometric function. - Stefano Spezia, Nov 21 2021
a(n) ~ sqrt(5/Pi) * 3^(n-1) * 4^n / n^(3/2). - Vaclav Kotesovec, Nov 22 2021

A349603 a(n) = Sum_{k=0..n} binomial(n,k) * A000108(k) * k^(n-k).

Original entry on oeis.org

1, 1, 4, 20, 126, 937, 7938, 74909, 775022, 8688827, 104608026, 1342844846, 18273663268, 262347913479, 3957524475778, 62511713866200, 1030842278673510, 17700339693712731, 315740112103311666, 5839137279831300536, 111749137533005481700, 2209538389126578658875
Offset: 0

Views

Author

Vaclav Kotesovec, Nov 23 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{1}, Table[Sum[Binomial[n, j]*CatalanNumber[j]*j^(n-j), {j, 0, n}], {n, 1, 25}]]
  • PARI
    a(n) = sum(k=0, n, binomial(n,k)*(binomial(2*k,k)/(k+1))*k^(n-k)); \\ Michel Marcus, Nov 23 2021

A257389 Number of 3-generalized Motzkin paths of length n with no level steps H=(3,0) at odd level.

Original entry on oeis.org

1, 0, 1, 1, 2, 2, 6, 6, 17, 21, 54, 74, 183, 272, 644, 1025, 2342, 3928, 8734, 15264, 33227, 59989, 128484, 238008, 503563, 952038, 1995955, 3835381, 7987092, 15548654, 32223061, 63388488, 130918071, 259724317, 535168956, 1069025128
Offset: 0

Views

Author

Keywords

Examples

			For n=6 we have 6 paths: UDUDUD, H3H3, UUDUDD, UUUDDD, UDUUDD and UUDDUD, where H3=(3,0).
		

Crossrefs

Programs

  • Maple
    f:= gfun:-rectoproc({(2 + n)*a(n) + (14 + 4*n)*a(n + 1) + (-10 - 2*n)*a(n + 3) + (-20 - 4*n)*a(n + 4) + (8 + n)*a(n + 6), a(0) = 1, a(1) = 0, a(2) = 1, a(3) = 1, a(4) = 2, a(5) = 2},a(n),remember):
    map(f, [$0..100]); # Robert Israel, Nov 04 2019
  • Maxima
    a(n):=sum(((-1)^(n-3*k)+1)*((binomial((n-k)/2,k) )*(binomial(n-3*k,(n-3*k)/2))/((n-3*k+2))),k,0,(n)/3); /* Vladimir Kruchinin, Apr 02 2016 */

Formula

G.f.: (1-x^3-sqrt((1-x^3)*(1-4*x^2-x^3)))/(2*x^2*(1-x^3)).
a(n) = Sum_{k=0..n/3}(((-1)^(n-3*k)+1)*(binomial((n-k)/2,k)*(binomial(n-3*k,(n-3*k)/2))/((n-3*k+2)))). - Vladimir Kruchinin, Apr 02 2016
(2 + n)*a(n) + (14 + 4*n)*a(n + 1) + (-10 - 2*n)*a(n + 3) + (-20 - 4*n)*a(n + 4) + (8 + n)*a(n + 6) = 0. - Robert Israel, Nov 04 2019

A271025 A(n, k) is the n-th binomial transform of the Catalan sequence (A000108) evaluated at k. Array read by descending antidiagonals for n >= 0 and k >= 0.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 5, 5, 3, 1, 14, 15, 10, 4, 1, 42, 51, 37, 17, 5, 1, 132, 188, 150, 77, 26, 6, 1, 429, 731, 654, 371, 141, 37, 7, 1, 1430, 2950, 3012, 1890, 798, 235, 50, 8, 1, 4862, 12235, 14445, 10095, 4706, 1539, 365, 65, 9, 1, 16796, 51822, 71398, 56040, 28820, 10392, 2726, 537, 82, 10, 1
Offset: 0

Views

Author

John M. Campbell, Mar 28 2016

Keywords

Comments

Interestingly, the determinant of the n X n array of entries of the form A(i,j) is equal to the (n-1)-th superfactorial number (see A000178).
As indicated in A104455, the k-th binomial transform of A000108 will have:
o.g.f.: (1-sqrt((1-(k+4)*x)/(1-k*x)))/(2*x),
e.g.f.: exp((k+2)*x)*(BesselI(0,2x) - BesselI(1,2x)) and
a(n) = Sum_{i=0..n} binomial(n, i)*CatalanNumber(i)*k^(n-i).
The columns of this array are polynomial integer sequences. The successive polynomials corresponding to the columns of this array are: p0(n) = 1, p1(n) = n + 1, p2(n) = n^2 + 2n + 2, p3(n) = n^3 + 3*n^2 + 6*n + 5, p4(n) = n^4 + 4*n^3 + 12*n^2 + 20*n + 14, and so forth. The coefficients of these successive polynomials form a number triangle, which is given by A098474.

Examples

			The array given by integers of the form A(n,k) is illustrated below:
[0] 1, 1,  2,   5,    14,    42,     132,     429,      1430, ...
[1] 1, 2,  5,   15,   51,    188,    731,     2950,     12235, ...
[2] 1, 3,  10,  37,   150,   654,    3012,    14445,    71398, ...
[3] 1, 4,  17,  77,   371,   1890,   10095,   56040,    320795, ...
[4] 1, 5,  26,  141,  798,   4706,   28820,   182461,   1188406, ...
[5] 1, 6,  37,  235,  1539,  10392,  72267,   516474,   3783115, ...
[6] 1, 7,  50,  365,  2726,  20838,  162996,  1303485,  10642310, ...
[7] 1, 8,  65,  537,  4515,  38654,  337007,  2991340,  27013723, ...
[8] 1, 9,  82,  757,  7086,  67290,  648420,  6340365,  62893270, ...
[9] 1, 10, 101, 1031, 10643, 111156, 1174875, 12568686, 136080971, ...
Seen as a triangle:
                          1
                         1, 1
                       2, 2, 1
                      5, 5, 3, 1
                   14, 15, 10, 4, 1
                 42, 51, 37, 17, 5, 1
             132, 188, 150, 77, 26, 6, 1
          429, 731, 654, 371, 141, 37, 7, 1
      1430, 2950, 3012, 1890, 798, 235, 50, 8, 1
		

Crossrefs

Programs

  • Maple
    A := (n, k) -> (2/Pi)*int((k+4*x^2)^(n-k)*sqrt(1 - x^2), x=-1..1):
    for n from 0 to 9 do seq(A(n,k), k=0..n) od; # Peter Luschny, Jan 27 2020
  • Mathematica
    A000108[n_]:= Binomial[2*n,n]/(n+1) ;
    T[i_,j_]: Sum[Binomial(j,k)*A000108(k)*i^(j-k), {k,0,j}] ;
    A[0, k_] := CatalanNumber[k]; A[n_, k_] := n^k*Hypergeometric2F1[1/2, -k, 2, -4/n];
    Table[A[n, k], {n, 0, 6}, {k, 0, 8}] (* Peter Luschny, Jan 27 2020 *)
  • Sage
    def A000108(n): return binomial(2*n,n)/(n+1) ;
    def T(i,j): return sum(binomial(j,k)*A000108(k)*i^(j-k) for k in range(j+1))

Formula

A(0,j) = A000108(j).
A(i,j) = Sum_{k=0..j} binomial(j,k)*A(i-1,k) for i >= 1.
A(i,j) = Sum_{k=0..j} binomial(j,k)*A000108(k)*i^(j-k).
From Peter Luschny, Jan 27 2020: (Start)
A(n,k) = n^k*hypergeom([1/2, -k], [2], -4/n) for n >= 1.
A(n,k) = (2/Pi)*Integral_{x=-1..1}(k + 4*x^2)^(n - k)*sqrt(1 - x^2). (End)

A257515 Number of 3-generalized 2-Motzkin paths of length n with no level steps H=(3,0) at odd level.

Original entry on oeis.org

1, 0, 1, 2, 2, 4, 9, 12, 26, 48, 90, 172, 348, 664, 1349, 2680, 5438, 10976, 22510, 45900, 94700, 195032, 404442, 838824, 1748308, 3646368, 7632628, 15994232, 33606168, 70699504, 149050669, 314625264, 665280246, 1408436672, 2986069782, 6337988876
Offset: 0

Views

Author

Keywords

Examples

			For n=6 we have 9 paths: UDUDUD, H3H3 (4 options), UUDUDD, UUUDDD, UDUUDD and UUDDUD, where H3=(3,0).
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1-2*x^3-Sqrt[(1-2x^3)*(1-4*x^2-2*x^3)])/(2*x^2*(1-2*x^3)), {x, 0, 30}], x] (* Vaclav Kotesovec, Apr 28 2015 *)
  • Maxima
    a(n):=sum((binomial(2*m,m)/(m+1)*(if mod(n+m,3)=0 then 2^((n-2*m)/3)* binomial((m+n)/3,m) else 0)),m,0,n); /* Vladimir Kruchinin, Mar 07 2016 */
    
  • PARI
    seq(n)={Vec((1-2*x^3-sqrt((1-2*x^3)*(1-4*x^2-2*x^3) + O(x^(3+n))))/(2*x^2*(1-2*x^3)))} \\ Andrew Howroyd, May 01 2020

Formula

G.f.: (1-2*x^3-sqrt((1-2x^3)*(1-4*x^2-2*x^3)))/(2*x^2*(1-2*x^3)).
Conjecture: (n+2)*a(n) +(n+1)*a(n-1) +(n+4)*a(n-2) +4*(-2*n+3)*a(n-3) +4*(-6*n+17)*a(n-4) +4*(-3*n+10)*a(n-5) +4*(3*n-11)*a(n-6) +4*(11*n-50)*a(n-7) +20*(n-6)*a(n-8)=0. - R. J. Mathar, Jun 07 2016

Extensions

Terms a(31) and beyond from Andrew Howroyd, May 01 2020

A346763 G.f. A(x) satisfies: A(x) = 1 / (1 - 3*x) + x * (1 - 3*x) * A(x)^3.

Original entry on oeis.org

1, 4, 18, 93, 550, 3636, 26079, 197931, 1562382, 12685116, 105187512, 886700898, 7574331987, 65413265014, 570155069547, 5008957733472, 44306834969838, 394269180748272, 3527034255411864, 31700659283908242, 286124960854479888, 2592334353741781752, 23567790327842864046
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 02 2021

Keywords

Comments

Third binomial transform of A001764.

Crossrefs

Programs

  • Mathematica
    nmax = 22; A[] = 0; Do[A[x] = 1/(1 - 3 x) + x (1 - 3 x) A[x]^3 + O[x]^(nmax + 1) // Normal,nmax + 1]; CoefficientList[A[x], x]
    Table[Sum[Binomial[n, k] Binomial[3 k, k] 3^(n - k)/(2 k + 1), {k, 0, n}], {n, 0, 22}]
    Table[3^n HypergeometricPFQ[{1/3, 2/3, -n}, {1, 3/2}, -9/4], {n, 0, 22}]

Formula

a(n) = Sum_{k=0..n} binomial(n,k) * binomial(3*k,k) * 3^(n-k) / (2*k + 1).
a(n) ~ 3^(n - 5/2) * 13^(n + 3/2) / (sqrt(Pi) * n^(3/2) * 2^(2*(n+1))). - Vaclav Kotesovec, Nov 26 2021
Previous Showing 11-16 of 16 results.