cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 38 results. Next

A107708 Number of paths from (0,0) to (3n,0) that stay in the first quadrant (x,y >= 0) and where each step is (3,0), (2,1), (1,2), or (1,-1).

Original entry on oeis.org

1, 3, 18, 144, 1323, 13176, 138348, 1507977, 16900650, 193536864, 2254630788, 26635735440, 318350663748, 3842488208997, 46770206742342, 573435609537600, 7075551692662875, 87794803094586336, 1094807464312435344
Offset: 0

Views

Author

Emeric Deutsch, Jun 10 2005

Keywords

Examples

			a(1)=3 because we have H, uD and Udd, where H=(3,0), u=(2,1), U=(1,2) and D=(1,-1).
		

Crossrefs

Programs

  • Maple
    a:=n->(1/n)*sum(3^j*binomial(n,j)*binomial(n+j,2*n+1-j),j=ceil((n+1)/2)..n): 1,seq(a(n),n=1..22);
  • Mathematica
    Flatten[{1,Table[1/n*Sum[3^j*Binomial[n, j]*Binomial[n+j, 2n+1-j], {j,Floor[(n+1)/2],n}],{n,1,20}]}] (* Vaclav Kotesovec, Mar 17 2014 *)
  • PARI
    concat([1], for(n=1,50, print1((1/n)*sum(j=floor((n+1)/2),n, 3^j*binomial(n,j)*binomial(n+j,2*n+1-j)), ", "))) \\ G. C. Greubel, Mar 16 2017

Formula

a(n) = (1/n)*Sum(3^j*binomial(n, j)*binomial(n+j, 2n+1-j), j=ceiling((n+1)/2)..n) for n >= 1; a(0)=1.
G.f. = (2/3)w*sin((1/3)*arcsin((36-7z)/2/(3-2z)/w))-1/3, where w=sqrt((3-2z)/z).
Recurrence: 2*n*(2*n+1)*(17*n-25)*a(n) = 4*(238*n^3 - 588*n^2 + 395*n - 72)*a(n-1) - 12*(n-2)*(34*n^2 - 67*n + 21)*a(n-2) + 3*(n-3)*(n-2)*(17*n - 8)*a(n-3). - Vaclav Kotesovec, Mar 17 2014
a(n) ~ (1/204)*sqrt(102)*sqrt((134963 + 21573*sqrt(17))^(1/3) * ((134963 + 21573*sqrt(17))^(2/3) + 2176 + 68*(134963 + 21573*sqrt(17))^(1/3))) / ((134963 + 21573*sqrt(17))^(1/3)*sqrt(Pi)) * 6^(-n) * ((19009 + 153*sqrt(17))^(2/3) + 712 + 28*(19009 + 153*sqrt(17))^(1/3))^n * (19009 + 153*sqrt(17))^(-n/3)*(1/n)^(3/2). - Vaclav Kotesovec, Mar 17 2014
D-finite with recurrence 8*n*(2*n+1)*a(n) +2*(-106*n^2+97*n-18)*a(n-1) +36*(-2*n^2+12*n-15)*a(n-2) +12*(5*n-14)*(n-3)*a(n-3) -9*(n-3)*(n-4)*a(n-4)=0. - R. J. Mathar, Jul 26 2022
G.f. satisfies A(x) = 1 + x * A(x) * (1 + A(x) + A(x)^2). - Seiichi Manyama, Apr 01 2024

A165542 Number of permutations of length n which avoid the patterns 4231 and 4123.

Original entry on oeis.org

1, 1, 2, 6, 22, 89, 380, 1677, 7566, 34676, 160808, 752608, 3548325, 16830544, 80234659, 384132724, 1845829988, 8897740300, 43010084460, 208409687323, 1012046126532, 4923952560917, 23997719075657, 117136530812812, 572552052378494, 2802078324448067
Offset: 0

Views

Author

Vincent Vatter, Sep 21 2009

Keywords

Comments

G.f. conjectured to be non-D-finite (see Albert et al link). - Jay Pantone, Oct 01 2015

Examples

			There are 22 permutations of length 4 which avoid these two patterns, so a(4)=22.
		

Crossrefs

Extensions

More terms from David Bevan, Feb 04 2014
a(0)=1 prepended by Jay Pantone, Oct 01 2015

A165545 Number of permutations of length n which avoid the patterns 2341 and 3421.

Original entry on oeis.org

1, 1, 2, 6, 22, 89, 382, 1711, 7922, 37663, 182936, 904302, 4535994, 23034564, 118209806, 612165222, 3195359360, 16795435994, 88825567814, 472356139660, 2524292893556, 13549955878141, 73026827854516, 395017112175542, 2143881709415478, 11671226062503926
Offset: 0

Views

Author

Vincent Vatter, Sep 21 2009

Keywords

Comments

These permutations have an enumeration scheme of depth 4.
G.f. is conjectured to be non-D-finite (see Albert et al link). - Jay Pantone, Oct 01 2015

Examples

			There are 22 permutations of length 4 which avoid these two patterns, so a(4)=22.
		

Crossrefs

Extensions

a(0)=1 prepended by Jay Pantone, Oct 01 2015

A257562 Number of permutations of length n that avoid the patterns 4123, 4231, and 4312.

Original entry on oeis.org

1, 1, 2, 6, 21, 79, 310, 1251, 5150, 21517, 90921, 387595, 1663936, 7183750, 31158310, 135661904, 592558096, 2595232344, 11392504426, 50109205789, 220777103354, 974162444028, 4303957562319, 19036842605855, 84285643628790, 373502845338552, 1656428550764640, 7351106011540209, 32643855249507805, 145040974005303590, 644756480385363800
Offset: 0

Views

Author

Jay Pantone, Apr 30 2015

Keywords

Comments

G.f. conjectured to be non-D-finite (see Albert et al. link). Jay Pantone, Oct 01 2015
Unlike A061552, whose g.f. is also conjectured to be non-D-finite, thousands of terms of the counting sequence are known. - David Callan, Aug 29 2017

Examples

			a(4) = 21 because there are 24 permutations of length 4 and 3 of them do not avoid 4123, 4231, and 4312.
		

Crossrefs

A363809 Number of permutations of [n] that avoid the patterns 2-41-3, 3-14-2, and 2-1-3-5-4.

Original entry on oeis.org

1, 1, 2, 6, 22, 89, 378, 1647, 7286, 32574, 146866, 667088, 3050619, 14039075, 64992280, 302546718, 1415691181, 6656285609, 31436228056, 149079962872, 709680131574, 3390269807364, 16248661836019, 78109838535141, 376531187219762, 1819760165454501
Offset: 0

Views

Author

Andrei Asinowski, Jun 23 2023

Keywords

Comments

Equivalently, for n>0, the number of separable permutations of [n] that avoid 2-1-3-5-4.
The number of guillotine rectangulations (with respect to the weak equivalence) that avoid the geometric pattern "7". See the Merino and Mütze reference, Table 3, entry "12347".

References

  • Andrei Asinowski and Cyril Banderier. Geometry meets generating functions: Rectangulations and permutations (2023).

Crossrefs

Other entries including the patterns 1, 2, 3, 4 in the Merino and Mütze reference: A006318, A106228, A078482, A033321, A363810, A363811, A363812, A363813, A006012.

Formula

The generating function F=F(x) satisfies the equation x^4*(x - 2)^2*F^4 + x*(x - 2)*(4*x^3 - 7*x^2 + 6*x - 1)*F^3 + (2*x^4 - x^3 - 2*x^2 + 5*x - 1)*F^2 - (4*x^3 - 7*x^2 + 6*x - 1)*F + x^2 = 0.

A363810 Number of permutations of [n] that avoid the patterns 2-41-3, 3-14-2, 2-14-3, and 4-5-3-1-2.

Original entry on oeis.org

1, 1, 2, 6, 21, 79, 306, 1196, 4681, 18308, 71564, 279820, 1095533, 4298463, 16913428, 66769536, 264526329, 1051845461, 4197832133, 16813161765, 67571221016, 272448598737, 1101876945673, 4469106749281, 18174503562880, 74093063050412, 302753929958872
Offset: 0

Views

Author

Andrei Asinowski, Jun 23 2023

Keywords

Comments

Equivalently, for n>0, the number of separable permutations of [n] that avoid 2-14-3 and 2-1-3-5-4.
The number of guillotine rectangulations (with respect to the weak equivalence) that avoid the geometric patterns "5" and "8". See the Merino and Mütze reference, Table 3, entry "123458".

Crossrefs

Other entries including the patterns 1, 2, 3, 4 in the Merino and Mütze reference: A006318, A106228, A363809, A078482, A033321, A363811, A363812, A363813, A006012.

Programs

  • Maple
    with(gfun): seq(coeff(algeqtoseries(x^8*(-2+x)^2*F^4 - x^3*(x-1)*(-2+x)*(x^5-7*x^4+4*x^3-6*x^2+5*x-1)*F^3 - x*(x-1)*(4*x^7-22*x^6+37*x^5-42*x^4+53*x^3-35*x^2+10*x-1)*F^2 - (5*x^6-16*x^5+15*x^4-28*x^3+23*x^2-8*x+1)*(x-1)^2*F - (2*x^5-5*x^4+4*x^3-10*x^2+6*x-1)*(x-1)^2, x, F, 32, true)[1], x, n+1), n = 0..30); # Vaclav Kotesovec, Jun 24 2023

Formula

The generating function F=F(x) satisfies the equation x^8*(x - 2)^2*F^4 - x^3*(x - 1)*(x - 2)*(x^5 - 7*x^4 + 4*x^3 - 6*x^2 + 5*x - 1)*F^3 - x*(x - 1)*(4*x^7 - 22*x^6 + 37*x^5 - 42*x^4 + 53*x^3 - 35*x^2 + 10*x - 1)*F^2 - (5*x^6 - 16*x^5 + 15*x^4 - 28*x^3 + 23*x^2 - 8*x + 1)*(x - 1)^2*F - (2*x^5 - 5*x^4 + 4*x^3 - 10*x^2 + 6*x - 1)*(x - 1)^2 = 0.

A363811 Number of permutations of [n] that avoid the patterns 2-41-3, 3-14-2, 2-1-3-5-4, and 4-5-3-1-2.

Original entry on oeis.org

1, 1, 2, 6, 22, 88, 362, 1488, 6034, 24024, 93830, 359824, 1357088, 5043260, 18501562, 67120024, 241169322, 859450004, 3041415520, 10699090888, 37448249502, 130518538696, 453276141238, 1569476495000, 5420784841936, 18683861676756, 64286814548706
Offset: 0

Views

Author

Andrei Asinowski, Jun 23 2023

Keywords

Comments

Equivalently, for n>0, the number of separable permutations of [n] that avoid 2-1-3-5-4 and 4-5-3-1-2.
The number of guillotine rectangulations (with respect to the weak equivalence) that avoid the geometric patterns "7" and "8". See the Merino and Mütze reference, Table 3, entry "123478".

Crossrefs

Other entries including the patterns 1, 2, 3, 4 in the Merino and Mütze reference: A006318, A106228, A363809, A078482, A033321, A363810, A363812, A363813, A006012.

Programs

  • Mathematica
    CoefficientList[Series[(1 - x)*(1 - 16*x + 109*x^2 - 410*x^3 + 923*x^4 - 1256*x^5 + 988*x^6 - 400*x^7 + 66*x^8 - 2*x^9)/((1 - 4*x + 2*x^2)*(1 - 3*x + x^2)^2*(1 - 2*x)^4),{x,0,26}],x] (* Stefano Spezia, Jun 24 2023 *)

Formula

G.f.: (1 - x)*(1 - 16*x + 109*x^2 - 410*x^3 + 923*x^4 - 1256*x^5 + 988*x^6 - 400*x^7 + 66*x^8 - 2*x^9)/((1 - 4*x + 2*x^2)*(1 - 3*x + x^2)^2*(1 - 2*x)^4).

A363812 Number of permutations of [n] that avoid the patterns 2-41-3, 3-14-2, 2-1-4-3, and 3-41-2.

Original entry on oeis.org

1, 1, 2, 6, 20, 69, 243, 870, 3159, 11611, 43130, 161691, 611065, 2325739, 8907360, 34304298, 132770564, 516164832, 2014739748, 7892775473, 31022627947, 122304167437, 483513636064, 1916394053725, 7613498804405, 30313164090695
Offset: 0

Views

Author

Andrei Asinowski, Jun 23 2023

Keywords

Comments

Equivalently, for n>0, the number of separable permutations of [n] that avoid 2-1-4-3 and 3-41-2.
The number of guillotine rectangulations (with respect to the weak equivalence) that avoid the geometric patterns "5", "6", "7". See the Merino and Mütze reference, Table 3, entry "1234567".

Crossrefs

Other entries including the patterns 1, 2, 3, 4 in the Merino and Mütze reference: A006318, A106228, A363809, A078482, A033321, A363810, A363811, A363813, A006012.

Programs

  • Mathematica
    CoefficientList[Series[(1 - 3*x + 3*x^2 - Sqrt[1 - 6*x + 7*x^2 + 2*x^3 + x^4])/(2*x^2*(2 - x)),{x,0,25}],x] (* Stefano Spezia, Jun 24 2023 *)

Formula

G.f.: (1 - 3*x + 3*x^2 - sqrt(1 - 6*x + 7*x^2 + 2*x^3 + x^4))/(2*x^2*(2 - x)).

A363813 Number of permutations of [n] that avoid the patterns 2-41-3, 3-14-2, 2-1-4-3, and 4-5-3-1-2.

Original entry on oeis.org

1, 1, 2, 6, 21, 78, 295, 1114, 4166, 15390, 56167, 202738, 724813, 2570276, 9052494, 31702340, 110503497, 383691578, 1328039043, 4584708230, 15793983638, 54315199642, 186526735307, 639831906594, 2192754259993, 7509139583560, 25699765092254, 87913948206096
Offset: 0

Views

Author

Andrei Asinowski, Jun 23 2023

Keywords

Comments

Equivalently, for n>0, the number of separable permutations of [n] that avoid 2-1-4-3 and 4-5-3-1-2.
The number of guillotine rectangulations (with respect to the weak equivalence) that avoid the geometric patterns "5", "7", "8". See the Merino and Mütze reference, Table 3, entry "1234578".

Crossrefs

Other entries including the patterns 1, 2, 3, 4 in the Merino and Mütze reference: A006318, A106228, A363809, A078482, A033321, A363810, A363811, A363812, A006012.

Programs

  • Mathematica
    CoefficientList[Series[(1 - 9*x + 29*x^2 - 39*x^3 + 20*x^4 - 3*x^5)/((1 - 4*x + 2*x^2)*(1 - 3*x + x^2)^2),{x,0,27}],x] (* Stefano Spezia, Jun 24 2023 *)

Formula

G.f.: (1 - 9*x + 29*x^2 - 39*x^3 + 20*x^4 - 3*x^5)/((1 - 4*x + 2*x^2)*(1 - 3*x + x^2)^2).

A364735 G.f. satisfies A(x) = 1 + x*A(x) / (1 + x*A(x)^2).

Original entry on oeis.org

1, 1, 0, -2, -1, 8, 10, -37, -84, 168, 660, -624, -4950, 583, 35464, 23166, -240513, -359008, 1511640, 3898100, -8387664, -36522256, 35444728, 311764768, -25659766, -2466384737, -1793133360, 18077558170, 28951038285, -120750295320, -330486900870
Offset: 0

Views

Author

Seiichi Manyama, Aug 05 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = if(n==0, 1, sum(k=0, n-1, (-1)^k*binomial(n, k)*binomial(n+k, n-1-k))/n);

Formula

a(n) = (1/n) * Sum_{k=0..n-1} (-1)^k * binomial(n,k) * binomial(n+k,n-1-k) for n > 0.
Previous Showing 11-20 of 38 results. Next