A107708
Number of paths from (0,0) to (3n,0) that stay in the first quadrant (x,y >= 0) and where each step is (3,0), (2,1), (1,2), or (1,-1).
Original entry on oeis.org
1, 3, 18, 144, 1323, 13176, 138348, 1507977, 16900650, 193536864, 2254630788, 26635735440, 318350663748, 3842488208997, 46770206742342, 573435609537600, 7075551692662875, 87794803094586336, 1094807464312435344
Offset: 0
a(1)=3 because we have H, uD and Udd, where H=(3,0), u=(2,1), U=(1,2) and D=(1,-1).
- G. C. Greubel, Table of n, a(n) for n = 0..880
- Emeric Deutsch, Problem 10658, American Math. Monthly, 107, 2000, 368-370.
- M. Dziemianczuk, Counting Lattice Paths With Four Types of Steps, Graphs and Combinatorics, September 2013, DOI 10.1007/s00373-013-1357-1.
-
a:=n->(1/n)*sum(3^j*binomial(n,j)*binomial(n+j,2*n+1-j),j=ceil((n+1)/2)..n): 1,seq(a(n),n=1..22);
-
Flatten[{1,Table[1/n*Sum[3^j*Binomial[n, j]*Binomial[n+j, 2n+1-j], {j,Floor[(n+1)/2],n}],{n,1,20}]}] (* Vaclav Kotesovec, Mar 17 2014 *)
-
concat([1], for(n=1,50, print1((1/n)*sum(j=floor((n+1)/2),n, 3^j*binomial(n,j)*binomial(n+j,2*n+1-j)), ", "))) \\ G. C. Greubel, Mar 16 2017
A165542
Number of permutations of length n which avoid the patterns 4231 and 4123.
Original entry on oeis.org
1, 1, 2, 6, 22, 89, 380, 1677, 7566, 34676, 160808, 752608, 3548325, 16830544, 80234659, 384132724, 1845829988, 8897740300, 43010084460, 208409687323, 1012046126532, 4923952560917, 23997719075657, 117136530812812, 572552052378494, 2802078324448067
Offset: 0
There are 22 permutations of length 4 which avoid these two patterns, so a(4)=22.
- David Bevan, Jay Pantone, and Nathaniel Shar, Table of n, a(n) for n = 0..1000 (terms 1 through 40 by David Bevan, terms 41 through 70 by Nathaniel Shar)
- Michael H. Albert, Cheyne Homberger, Jay Pantone, Nathaniel Shar, Vincent Vatter, Generating Permutations with Restricted Containers, arXiv:1510.00269 [math.CO], 2015.
- C. Bean, M. Tannock and H. Ulfarsson, Pattern avoiding permutations and independent sets in graphs, arXiv:1512.08155 [math.CO], 2015.
- Darla Kremer and Wai Chee Shiu, Finite transition matrices for permutations avoiding pairs of length four patterns, Discrete Math. 268 (2003), 171-183. MR1983276 (2004b:05006). See Table 1.
- Wikipedia, Permutation classes avoiding two patterns of length 4.
A165545
Number of permutations of length n which avoid the patterns 2341 and 3421.
Original entry on oeis.org
1, 1, 2, 6, 22, 89, 382, 1711, 7922, 37663, 182936, 904302, 4535994, 23034564, 118209806, 612165222, 3195359360, 16795435994, 88825567814, 472356139660, 2524292893556, 13549955878141, 73026827854516, 395017112175542, 2143881709415478, 11671226062503926
Offset: 0
There are 22 permutations of length 4 which avoid these two patterns, so a(4)=22.
- Jay Pantone, Table of n, a(n) for n = 0..1000
- Michael H. Albert, Cheyne Homberger, Jay Pantone, Nathaniel Shar, Vincent Vatter, Generating Permutations with Restricted Containers, arXiv:1510.00269 [math.CO], 2015.
- Darla Kremer and Wai Chee Shiu, Finite transition matrices for permutations avoiding pairs of length four patterns, Discrete Math. 268 (2003), 171-183. MR1983276 (2004b:05006). See Table 1.
- V. Vatter, Enumeration schemes for restricted permutations, Combin., Prob. and Comput. 17 (2008), 137-159.
- Wikipedia, Permutation classes avoiding two patterns of length 4.
A257562
Number of permutations of length n that avoid the patterns 4123, 4231, and 4312.
Original entry on oeis.org
1, 1, 2, 6, 21, 79, 310, 1251, 5150, 21517, 90921, 387595, 1663936, 7183750, 31158310, 135661904, 592558096, 2595232344, 11392504426, 50109205789, 220777103354, 974162444028, 4303957562319, 19036842605855, 84285643628790, 373502845338552, 1656428550764640, 7351106011540209, 32643855249507805, 145040974005303590, 644756480385363800
Offset: 0
a(4) = 21 because there are 24 permutations of length 4 and 3 of them do not avoid 4123, 4231, and 4312.
- Jay Pantone, Table of n, a(n) for n = 0..5000
- D. Callan, T. Mansour, Enumeration of small Wilf classes avoiding 1324 and two other 4-letter patterns, arXiv:1705.00933 [math.CO] (2017).
- David Callan, Toufik Mansour, Mark Shattuck, Enumeration of permutations avoiding a triple of 4-letter patterns is almost all done, Pure Mathematics and Applications (2019) Vol. 28, Issue 1, 14-69.
- Michael H. Albert, Cheyne Homberger, Jay Pantone, Nathaniel Shar, Vincent Vatter, Generating Permutations with Restricted Containers, arXiv:1510.00269 [math.CO], (2015).
A363809
Number of permutations of [n] that avoid the patterns 2-41-3, 3-14-2, and 2-1-3-5-4.
Original entry on oeis.org
1, 1, 2, 6, 22, 89, 378, 1647, 7286, 32574, 146866, 667088, 3050619, 14039075, 64992280, 302546718, 1415691181, 6656285609, 31436228056, 149079962872, 709680131574, 3390269807364, 16248661836019, 78109838535141, 376531187219762, 1819760165454501
Offset: 0
- Andrei Asinowski and Cyril Banderier. Geometry meets generating functions: Rectangulations and permutations (2023).
Other entries including the patterns 1, 2, 3, 4 in the Merino and Mütze reference:
A006318,
A106228,
A078482,
A033321,
A363810,
A363811,
A363812,
A363813,
A006012.
A363810
Number of permutations of [n] that avoid the patterns 2-41-3, 3-14-2, 2-14-3, and 4-5-3-1-2.
Original entry on oeis.org
1, 1, 2, 6, 21, 79, 306, 1196, 4681, 18308, 71564, 279820, 1095533, 4298463, 16913428, 66769536, 264526329, 1051845461, 4197832133, 16813161765, 67571221016, 272448598737, 1101876945673, 4469106749281, 18174503562880, 74093063050412, 302753929958872
Offset: 0
Other entries including the patterns 1, 2, 3, 4 in the Merino and Mütze reference:
A006318,
A106228,
A363809,
A078482,
A033321,
A363811,
A363812,
A363813,
A006012.
-
with(gfun): seq(coeff(algeqtoseries(x^8*(-2+x)^2*F^4 - x^3*(x-1)*(-2+x)*(x^5-7*x^4+4*x^3-6*x^2+5*x-1)*F^3 - x*(x-1)*(4*x^7-22*x^6+37*x^5-42*x^4+53*x^3-35*x^2+10*x-1)*F^2 - (5*x^6-16*x^5+15*x^4-28*x^3+23*x^2-8*x+1)*(x-1)^2*F - (2*x^5-5*x^4+4*x^3-10*x^2+6*x-1)*(x-1)^2, x, F, 32, true)[1], x, n+1), n = 0..30); # Vaclav Kotesovec, Jun 24 2023
A363811
Number of permutations of [n] that avoid the patterns 2-41-3, 3-14-2, 2-1-3-5-4, and 4-5-3-1-2.
Original entry on oeis.org
1, 1, 2, 6, 22, 88, 362, 1488, 6034, 24024, 93830, 359824, 1357088, 5043260, 18501562, 67120024, 241169322, 859450004, 3041415520, 10699090888, 37448249502, 130518538696, 453276141238, 1569476495000, 5420784841936, 18683861676756, 64286814548706
Offset: 0
- Andrei Asinowski and Cyril Banderier, From geometry to generating functions: rectangulations and permutations, arXiv:2401.05558 [cs.DM], 2024. See page 2.
- Arturo Merino and Torsten Mütze. Combinatorial generation via permutation languages. III. Rectangulations. Discrete & Computational Geometry, 70 (2023), 51-122. Preprint: arXiv:2103.09333 [math.CO], 2021.
- Index entries for linear recurrences with constant coefficients, signature (18,-141,630,-1767,3224,-3834,2896,-1312,320,-32).
Other entries including the patterns 1, 2, 3, 4 in the Merino and Mütze reference:
A006318,
A106228,
A363809,
A078482,
A033321,
A363810,
A363812,
A363813,
A006012.
-
CoefficientList[Series[(1 - x)*(1 - 16*x + 109*x^2 - 410*x^3 + 923*x^4 - 1256*x^5 + 988*x^6 - 400*x^7 + 66*x^8 - 2*x^9)/((1 - 4*x + 2*x^2)*(1 - 3*x + x^2)^2*(1 - 2*x)^4),{x,0,26}],x] (* Stefano Spezia, Jun 24 2023 *)
A363812
Number of permutations of [n] that avoid the patterns 2-41-3, 3-14-2, 2-1-4-3, and 3-41-2.
Original entry on oeis.org
1, 1, 2, 6, 20, 69, 243, 870, 3159, 11611, 43130, 161691, 611065, 2325739, 8907360, 34304298, 132770564, 516164832, 2014739748, 7892775473, 31022627947, 122304167437, 483513636064, 1916394053725, 7613498804405, 30313164090695
Offset: 0
Other entries including the patterns 1, 2, 3, 4 in the Merino and Mütze reference:
A006318,
A106228,
A363809,
A078482,
A033321,
A363810,
A363811,
A363813,
A006012.
-
CoefficientList[Series[(1 - 3*x + 3*x^2 - Sqrt[1 - 6*x + 7*x^2 + 2*x^3 + x^4])/(2*x^2*(2 - x)),{x,0,25}],x] (* Stefano Spezia, Jun 24 2023 *)
A363813
Number of permutations of [n] that avoid the patterns 2-41-3, 3-14-2, 2-1-4-3, and 4-5-3-1-2.
Original entry on oeis.org
1, 1, 2, 6, 21, 78, 295, 1114, 4166, 15390, 56167, 202738, 724813, 2570276, 9052494, 31702340, 110503497, 383691578, 1328039043, 4584708230, 15793983638, 54315199642, 186526735307, 639831906594, 2192754259993, 7509139583560, 25699765092254, 87913948206096
Offset: 0
- Andrei Asinowski and Cyril Banderier, From geometry to generating functions: rectangulations and permutations, arXiv:2401.05558 [cs.DM], 2024. See page 2.
- Arturo Merino and Torsten Mütze. Combinatorial generation via permutation languages. III. Rectangulations. Discrete & Computational Geometry, 70 (2023), 51-122. Preprint: arXiv:2103.09333 [math.CO], 2021.
- Index entries for linear recurrences with constant coefficients, signature (10,-37,62,-47,16,-2).
Other entries including the patterns 1, 2, 3, 4 in the Merino and Mütze reference:
A006318,
A106228,
A363809,
A078482,
A033321,
A363810,
A363811,
A363812,
A006012.
-
CoefficientList[Series[(1 - 9*x + 29*x^2 - 39*x^3 + 20*x^4 - 3*x^5)/((1 - 4*x + 2*x^2)*(1 - 3*x + x^2)^2),{x,0,27}],x] (* Stefano Spezia, Jun 24 2023 *)
A364735
G.f. satisfies A(x) = 1 + x*A(x) / (1 + x*A(x)^2).
Original entry on oeis.org
1, 1, 0, -2, -1, 8, 10, -37, -84, 168, 660, -624, -4950, 583, 35464, 23166, -240513, -359008, 1511640, 3898100, -8387664, -36522256, 35444728, 311764768, -25659766, -2466384737, -1793133360, 18077558170, 28951038285, -120750295320, -330486900870
Offset: 0
-
a(n) = if(n==0, 1, sum(k=0, n-1, (-1)^k*binomial(n, k)*binomial(n+k, n-1-k))/n);
Comments