A365084
G.f. satisfies A(x) = 1 + x*A(x) / (1 + x)^5.
Original entry on oeis.org
1, 1, -4, 6, 6, -49, 95, 24, -592, 1417, -414, -6809, 20142, -14831, -73353, 274761, -311105, -715647, 3607624, -5463428, -5785294, 45588556, -87189477, -25565196, 552659892, -1305250324, 340413165, 6379267117, -18606431142, 13202513476, 69064770845
Offset: 0
-
LinearRecurrence[{-4, -10, -10, -5, -1}, {1, 1, -4, 6, 6, -49}, 1 + 30] (* Robert P. P. McKone, Aug 21 2023 *)
-
a(n) = sum(k=0, n, (-1)^(n-k)*binomial(n+4*k-1, n-k));
A145462
Eigentriangle, row sums = the Padovan sequence, A000931.
Original entry on oeis.org
1, 1, 1, -1, 1, 2, 0, -1, 2, 2, 1, 0, -2, 2, 3, -1, 1, 0, -2, 3, 4, 0, -1, 2, 0, -3, 4, 5, 1, 0, -2, 2, 0, -4, 5, 7, -1, 1, 0, -2, 3, 0, -5, 7, 9, 0, -1, 2, 0, -3, 4, 0, -7, 9, 12, 1, 0, -2, 2, 0, -4, 5, 0, -9, 12, 16, -1, 1, 0, -2, 3, 0, -5, 7, 0, -12, 16, 21
Offset: 6
First few rows of the triangle =
1;
1, 1;
-1, 1, 2;
0, -1, 2, 2;
1, 0, -2, 2, 3;
-1, 1, 0, -2, 3, 4;
0, -1, 2, 0, -3, 4, 5;
1, 0, -2, 2, 0, -4, 5, 7;
-1, 1, 0, -2, 3, 0, -5, 7, 9;
0, -1, 2, 0, -3, 4, 0, -7, 9, 12;
1, 0, -2, 2, 0, -4, 5, 0, -9, 12, 16;
...
Example: Row 10 = (1, 0, -2, 2, 3) with A000931(10) = 3, rightmost term. This row = the termwise products of (1, 0, -1, 1, 1) and (1, 1, 2, 2, 3); where the Padovan sequence starting with offset 6 = (1, 1, 2, 2, 3, 4, 5, 7, 9,...).
A274922
a(n) = (-1)^n * n if n>0, a(0) = 1.
Original entry on oeis.org
1, -1, 2, -3, 4, -5, 6, -7, 8, -9, 10, -11, 12, -13, 14, -15, 16, -17, 18, -19, 20, -21, 22, -23, 24, -25, 26, -27, 28, -29, 30, -31, 32, -33, 34, -35, 36, -37, 38, -39, 40, -41, 42, -43, 44, -45, 46, -47, 48, -49, 50, -51, 52, -53, 54, -55, 56, -57, 58, -59
Offset: 0
G.f. = 1 - x + 2*x^2 - 3*x^3 + 4*x^4 - 5*x^5 + 6*x^6 - 7*x^7 + 8*x^8 + ...
-
m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1 + x+x^2)/(1+2*x+x^2))); // G. C. Greubel, Jul 29 2018
-
a[ n_] := If[ n < 1, Boole[n == 0], (-1)^n n];
a[ n_] := SeriesCoefficient[ (1 + x + x^2) / (1 + 2*x + x^2), {x, 0, n}];
LinearRecurrence[{-2,-1},{1,-1,2},60] (* Harvey P. Dale, Mar 30 2019 *)
-
{a(n) = if( n<1, n==0, (-1)^n * n)};
-
{a(n) = if( n<0, 0, polcoeff( (1 + x + x^2) / (1 + 2*x + x^2) + x * O(x^n), n))};
A317023
Square array A(n,k), n >= 0, k >= 0, read by ascending antidiagonals, where the sequence of row n is the expansion of (1-x^(n+1))/((1-x)^(n+1)).
Original entry on oeis.org
1, 1, 0, 1, 2, 0, 1, 3, 2, 0, 1, 4, 6, 2, 0, 1, 5, 10, 9, 2, 0, 1, 6, 15, 20, 12, 2, 0, 1, 7, 21, 35, 34, 15, 2, 0, 1, 8, 28, 56, 70, 52, 18, 2, 0, 1, 9, 36, 84, 126, 125, 74, 21, 2, 0, 1, 10, 45, 120, 210, 252, 205, 100, 24, 2, 0, 1, 11, 55, 165, 330, 462, 461, 315, 130, 27, 2, 0, 1, 12, 66
Offset: 0
The square array A(n,k) begins:
n\k | 0 1 2 3 4 5 6 7 8 9 10
====+=====================================================
0 | 1 0 0 0 0 0 0 0 0 0 0
1 | 1 2 2 2 2 2 2 2 2 2 2
2 | 1 3 6 9 12 15 18 21 24 27 30
3 | 1 4 10 20 34 52 74 100 130 164 202
4 | 1 5 15 35 70 125 205 315 460 645 875
5 | 1 6 21 56 126 252 461 786 1266 1946 2877
6 | 1 7 28 84 210 462 924 1715 2996 4977 7924
7 | 1 8 36 120 330 792 1716 3432 6434 11432 19412
8 | 1 9 45 165 495 1287 3003 6435 12870 24309 43749
9 | 1 10 55 220 715 2002 5005 11440 24310 48620 92377
10 | 1 11 66 286 1001 3003 8008 19448 43758 92378 184756
etc.
The triangle T(n,k) begins:
n\k | 0 1 2 3 4 5 6 7 8 9 10 11 12
====+==============================================
0 | 1
1 | 1 0
2 | 1 2 0
3 | 1 3 2 0
4 | 1 4 6 2 0
5 | 1 5 10 9 2 0
6 | 1 6 15 20 12 2 0
7 | 1 7 21 35 34 15 2 0
8 | 1 8 28 56 70 52 18 2 0
9 | 1 9 36 84 126 125 74 21 2 0
10 | 1 10 45 120 210 252 205 100 24 2 0
11 | 1 11 55 165 330 462 461 315 130 27 2 0
12 | 1 12 66 220 495 792 924 786 460 164 30 2 0
etc.
Row sums of the triangle give
A099036 for n >= 0.
In the square array; row 0..12 are:
A000007,
A040000,
A008486,
A005893,
A008487,
A008488,
A008489,
A008490,
A008491,
A008492,
A008493,
A008494,
A008495.
A173265 is based on the same square array, but is read by descending antidiagonals with special treatment of column 0.
-
nmax:=15;; A:=List([0..nmax],n->List([0..nmax],k->Binomial(n+k,k)-Binomial(k-1,k-1-n)));; b:=List([2..nmax],n->OrderedPartitions(n,2));;
a:=Flat(List([1..Length(b)],i->List([1..Length(b[i])],j->A[b[i][j][2]][b[i][j][1]]))); # Muniru A Asiru, Jul 20 2018
-
Table[SeriesCoefficient[(1 - x^(# + 1))/((1 - x)^(# + 1)), {x, 0, k}] &[n - k], {n, 0, 12}, {k, 0, n}] // Flatten (* Michael De Vlieger, Jul 20 2018 *)
-
T(n,k) = binomial(n+k,k) - binomial(k-1,k-1-n); \\ Michel Marcus, Aug 07 2018
Comments