cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 22 results. Next

A324105 a(1) = 0; for n > 1, a(n) = A000005(A156552(n)).

Original entry on oeis.org

0, 1, 2, 2, 3, 2, 4, 2, 4, 3, 5, 2, 6, 2, 4, 4, 7, 2, 8, 2, 6, 4, 9, 2, 6, 4, 4, 4, 10, 4, 11, 2, 4, 4, 6, 4, 12, 2, 8, 4, 13, 2, 14, 2, 4, 8, 15, 2, 8, 3, 8, 2, 16, 2, 9, 2, 8, 6, 17, 2, 18, 4, 4, 6, 6, 4, 19, 4, 4, 2, 20, 4, 21, 4, 4, 4, 8, 4, 22, 2, 8, 4, 23, 6, 12, 8, 16, 8, 24, 6, 12, 4, 12, 12, 12, 4, 25, 3, 8, 4, 26, 6, 27, 2, 8
Offset: 1

Views

Author

Antti Karttunen, Feb 18 2019

Keywords

Comments

If a(n) is odd, then A067029(n) = 1 (and A319710(n) = 0), but not necessarily vice versa. See also formulas in A106737.

Crossrefs

Cf. also A323243, A324104, A324119, A324117 for similarly permuted sigma, phi, omega and A001227 (number of odd divisors).

Programs

  • Mathematica
    Array[If[# == 1, 0, DivisorSigma[0, #] &@ Floor@ Total@ Flatten@ MapIndexed[#1 2^(#2 - 1) &, Flatten[Table[2^(PrimePi@ #1 - 1), {#2}] & @@@ FactorInteger@ #]]] &, 105] (* Michael De Vlieger, Mar 11 2019 *)
  • PARI
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A156552(n) = if(1==n, 0, if(!(n%2), 1+(2*A156552(n/2)), 2*A156552(A064989(n))));
    A324105(n) = if(1==n,0,numdiv(A156552(n)));

Formula

a(1) = 0; for n > 1, a(n) = A000005(A156552(n)).

A277335 Fibbinary numbers multiplied by three: a(n) = 3*A003714(n); Numbers where all 1-bits occur in runs of even length.

Original entry on oeis.org

0, 3, 6, 12, 15, 24, 27, 30, 48, 51, 54, 60, 63, 96, 99, 102, 108, 111, 120, 123, 126, 192, 195, 198, 204, 207, 216, 219, 222, 240, 243, 246, 252, 255, 384, 387, 390, 396, 399, 408, 411, 414, 432, 435, 438, 444, 447, 480, 483, 486, 492, 495, 504, 507, 510, 768, 771, 774, 780, 783, 792, 795, 798, 816, 819, 822, 828, 831, 864, 867, 870, 876, 879, 888
Offset: 0

Views

Author

Antti Karttunen, Oct 18 2016

Keywords

Comments

The positive entries are the viabin numbers of integer partitions into even parts. The viabin number of an integer partition is defined in the following way. Consider the southeast border of the Ferrers board of the integer partition and consider the binary number obtained by replacing each east step with 1 and each north step, except the last one, with 0. The corresponding decimal form is, by definition, the viabin number of the given integer partition. "Viabin" is coined from "via binary". For example, consider the integer partition [6,4,4,2]. The southeast border of its Ferrers board yields 110110011, leading to the viabin number 435 (a term of the sequence). - Emeric Deutsch, Sep 11 2017

Crossrefs

Cf. A003714.
Positions of odd terms in A106737.
Cf. also A001196 (a subsequence).

Programs

  • Mathematica
    3 Select[Range[300], BitAnd[#, 2 #]==0 &] (* Vincenzo Librandi, Sep 12 2017 *)
  • Python
    def A277335(n):
        tlist, s = [1,2], 0
        while tlist[-1]+tlist[-2] <= n: tlist.append(tlist[-1]+tlist[-2])
        for d in tlist[::-1]:
            s <<= 1
            if d <= n:
                s += 1
                n -= d
        return 3*s # Chai Wah Wu, Apr 24 2025
  • Scheme
    (define (A277335 n) (* 3 (A003714 n)))
    

Formula

a(n) = 3*A003714(n).

A277561 a(n) = Sum_{k=0..n} ({binomial(n+2k,2k)*binomial(n,k)} mod 2).

Original entry on oeis.org

1, 2, 2, 2, 2, 4, 2, 2, 2, 4, 4, 4, 2, 4, 2, 2, 2, 4, 4, 4, 4, 8, 4, 4, 2, 4, 4, 4, 2, 4, 2, 2, 2, 4, 4, 4, 4, 8, 4, 4, 4, 8, 8, 8, 4, 8, 4, 4, 2, 4, 4, 4, 4, 8, 4, 4, 2, 4, 4, 4, 2, 4, 2, 2, 2, 4, 4, 4, 4, 8, 4, 4, 4, 8, 8, 8, 4, 8, 4, 4, 4, 8, 8, 8, 8, 16, 8
Offset: 0

Views

Author

Chai Wah Wu, Oct 19 2016

Keywords

Comments

Equals the run length transform of A040000: 1,2,2,2,2,2,...

Crossrefs

Programs

  • Mathematica
    Table[Sum[Mod[Binomial[n + 2 k, 2 k] Binomial[n, k], 2], {k, 0, n}], {n, 0, 86}] (* Michael De Vlieger, Oct 21 2016 *)
  • PARI
    a(n) = sum(k=0, n, binomial(n+2*k, 2*k)*binomial(n,k) % 2); \\ Michel Marcus, Oct 21 2016
  • Python
    def A277561(n):
        return sum(int(not (~(n+2*k) & 2*k) | (~n & k)) for k in range(n+1))
    

Formula

a(n) = 2^A069010(n). a(2n) = a(n), a(4n+1) = 2a(n), a(4n+3) = a(2n+1). - Chai Wah Wu, Nov 04 2016
a(n) = A034444(A005940(1+n)). - Antti Karttunen, May 29 2017

A324057 a(n) = A106315(A005940(1+n)).

Original entry on oeis.org

0, 1, 2, 5, 4, 0, 1, 2, 6, 4, 12, 16, 13, 30, 28, 18, 10, 8, 20, 36, 44, 24, 36, 12, 33, 21, 78, 51, 32, 72, 42, 3, 12, 16, 36, 0, 4, 48, 66, 50, 20, 128, 72, 48, 58, 144, 120, 108, 97, 75, 198, 32, 102, 312, 10, 84, 172, 128, 504, 176, 1, 168, 2, 67, 16, 20, 44, 12, 8, 96, 126, 88, 28, 16, 168, 112, 162, 264, 232, 56, 68, 80, 312, 0, 200, 480, 36, 120
Offset: 0

Views

Author

Antti Karttunen, Feb 14 2019

Keywords

Crossrefs

Programs

Formula

a(n) = A106315(A005940(1+n)).
a(n) = A005940(1+n)*A106737(n) mod A324054(n).

A324183 a(n) = d(A163511(n)), where d(n) is A000005, the number of divisors of n.

Original entry on oeis.org

1, 2, 3, 2, 4, 3, 4, 2, 5, 4, 6, 3, 6, 4, 4, 2, 6, 5, 8, 4, 9, 6, 6, 3, 8, 6, 8, 4, 6, 4, 4, 2, 7, 6, 10, 5, 12, 8, 8, 4, 12, 9, 12, 6, 9, 6, 6, 3, 10, 8, 12, 6, 12, 8, 8, 4, 8, 6, 8, 4, 6, 4, 4, 2, 8, 7, 12, 6, 15, 10, 10, 5, 16, 12, 16, 8, 12, 8, 8, 4, 15, 12, 18, 9, 18, 12, 12, 6, 12, 9, 12, 6, 9, 6, 6, 3, 12, 10, 16, 8, 18, 12, 12, 6, 16, 12
Offset: 0

Views

Author

Antti Karttunen, Feb 17 2019

Keywords

Comments

For all i, j: A286531(i) = A286531(j) => a(i) = a(j).

Crossrefs

Programs

  • PARI
    A324183(n) = if(!n,1,n = ((3<<#binary(n\2))-n-1); my(e=0,m=1); while(n>0, if(!(n%2), m *= (1+e); e=0, e++); n >>= 1); (m*(1+e)));
    
  • PARI
    A163511(n) = if(!n,1,my(p=2, t=1); while(n>1, if(!(n%2), (t*=p), p=nextprime(1+p)); n >>= 1); (t*p));
    A324183(n) = numdiv(A163511(n));
    
  • PARI
    A054429(n) = if(!n,n,((3<<#binary(n\2))-n-1)); \\ After code in A054429
    A106737(n) = sum(k=0, n, (binomial(n+k, n-k)*binomial(n, k)) % 2);
    A324183(n) = A106737(A054429(n));
    
  • Python
    def A324183(n):
        if n:
            c = 1
            while n:
                c *= (s:=(~n&n-1).bit_length()+1)
                n >>= s
            return c*(s+1)//s
        return 1 # Chai Wah Wu, Jul 25 2023

Formula

a(n) = A000005(A163511(n)).
a(n) = A106737(A054429(n)).
For all n >= 0, a(2^n) = n+2.

A153013 Starting with input 0, find the binary value of the input. Then interpret resulting string of 1's and 0's as prime-based numbers, as follows: 0's are separators, uninterrupted strings of 1's are interpreted from right to left as exponents of the prime numbers. Output is returned as input for the next number in sequence.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 9, 10, 15, 16, 11, 12, 25, 50, 147, 220, 6125, 1968750, 89142864525, 84252896510182189218, 34892570216750728458698250328871491829901861750593684043
Offset: 0

Views

Author

Mark Zegarelli (mtzmtz(AT)gmail.com), Dec 16 2008

Keywords

Comments

From Antti Karttunen, Oct 15 2016: (Start)
Iterates of map f : n -> A005940(1+n), (Doudna-sequence, but with starting offset zero) starting from the initial value 0. Conversely, the unique infinite sequence such that a(n) = A156552(a(n+1)) and a(0) = 0.
Note that map f can also form cycles, like 7 <-> 8 (A005940(1+7) = 8, A005940(1+8) = 7).
On the other hand, this sequence cannot ever fall into a loop because 0 is not in the range of map f, for n=0.., while f is injective on [1..]. Thus the values obtained by this sequence are not bounded, although there might be more nonmonotonic positions like for example there is from a(10) = 16 to a(11) = 11.
The formula A008966(a(n+1)) = A085357(a(n)) tells that the squarefreeness of the next term a(n+1) is determined by whether the previous term a(n) is a fibbinary number (A003714) or not. Numerous other such correspondences hold, and they hold also for any other trajectories outside of this sequence.
Even and odd terms alternate. No two squares can occur in succession because A106737 obtains even values for all squares > 1 and A000005 is odd for all squares. More directly this is seen from the fact that the rightmost 1-bit in the binary expansion of any square is always alone.
(End)

Examples

			101 is interpreted as 3^1 * 2^1 = 6. 1110011 is interpreted as 5^3 * 2^2 = 500.
		

Crossrefs

Cf. also A109162, A328316 for similar iteration sequences.

Programs

  • Mathematica
    NestList[Times @@ Flatten@ MapIndexed[Prime[#2]^#1 &, #] &@ Flatten@ MapIndexed[If[Total@ #1 == 0, ConstantArray[0, Boole[First@ #2 == 1] + Length@ #1 - 1], Length@ #1] &, Reverse@ Split@ IntegerDigits[#, 2]] &, 0, 21] (* Michael De Vlieger, Oct 17 2016 *)
  • PARI
    step(n)=my(t=1,v); forprime(p=2,, v=valuation(n+1,2); t*=p^v; n>>=v+1; if(!n, return(t)))
    t=0; concat(0,vector(20,n, t=step(t))) \\ Charles R Greathouse IV, Sep 01 2015
    
  • Scheme
    ;; With memoization-macro definec.
    (definec (A153013 n) (if (zero? n) n (A005940 (+ 1 (A153013 (- n 1))))))
    ;; Antti Karttunen, Oct 15 2016

Formula

From Antti Karttunen, Oct 15 2016: (Start)
a(0) = 0; for n >= 1, a(n) = A005940(1+a(n-1)).
A008966(a(n+1)) = A085357(a(n)). [See the comment.]
A181819(a(1+n)) = A246029(a(n)).
A000005(a(n+1)) = A106737(a(n)).
(End)

Extensions

a(20)-a(22) from Yang Haoran, Aug 31 2015

A305418 Permutation of nonnegative integers: a(1) = 0, a(2n) = 1 + 2*a(n), a(2n+1) = 2*a(A305422(2n+1)).

Original entry on oeis.org

0, 1, 2, 3, 6, 5, 4, 7, 10, 13, 8, 11, 16, 9, 14, 15, 30, 21, 32, 27, 12, 17, 34, 23, 64, 33, 22, 19, 18, 29, 128, 31, 258, 61, 36, 43, 256, 65, 38, 55, 512, 25, 130, 35, 46, 69, 1024, 47, 20, 129, 62, 67, 66, 45, 2048, 39, 70, 37, 4096, 59, 8192, 257, 26, 63, 54, 517, 16384, 123, 24, 73, 16386, 87, 32768, 513, 142, 131, 8194, 77, 132, 111, 48, 1025, 42, 51
Offset: 1

Views

Author

Antti Karttunen, Jun 10 2018

Keywords

Comments

This is GF(2)[X] analog of A156552. Note the indexing: the domain starts from 1, while the range includes also zero.

Crossrefs

Cf. A305417 (inverse).
Cf. A305422.

Programs

  • PARI
    A091225(n) = polisirreducible(Pol(binary(n))*Mod(1, 2));
    A305419(n) = if(n<3,1, my(k=n-1); while(k>1 && !A091225(k),k--); (k));
    A305422(n) = { my(f = subst(lift(factor(Pol(binary(n))*Mod(1, 2))),x,2)); for(i=1,#f~,f[i,1] = Pol(binary(A305419(f[i,1])))); fromdigits(Vec(factorback(f))%2,2); };
    A305418(n) = if(1==n,(n-1),if(!(n%2),1+(2*(A305418(n/2))),2*A305418(A305422(n))));

Formula

a(1) = 0, a(2n) = 1 + 2*a(n), a(2n+1) = 2*a(A305422(2n+1)).
a(n) = A054429(A305428(n)).
For all n >= 1:
A000120(a(n)) = A091222(n).
A069010(a(n)) = A091221(n).
A106737(a(n)) = A091220(n).
A132971(a(n)) = A091219(n).
A085357(a(n)) = A304109(n).

A332816 a(n) = A156552(A332808(n)).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 8, 7, 6, 9, 32, 11, 16, 17, 10, 15, 64, 13, 128, 19, 18, 65, 512, 23, 12, 33, 14, 35, 256, 21, 2048, 31, 66, 129, 20, 27, 1024, 257, 34, 39, 4096, 37, 8192, 131, 22, 1025, 32768, 47, 24, 25, 130, 67, 16384, 29, 68, 71, 258, 513, 131072, 43, 65536, 4097, 38, 63, 36, 133, 524288, 259, 1026, 41, 2097152, 55, 262144, 2049, 26, 515
Offset: 1

Views

Author

Antti Karttunen, Feb 28 2020

Keywords

Crossrefs

Cf. A332815 (inverse permutation).

Programs

  • PARI
    up_to = 26927;
    A156552(n) = {my(f = factor(n), p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res}; \\ From A156552
    A332806list(up_to) = { my(v=vector(2), xs=Map(), lista=List([]), p,q,u); v[2] = 3; v[1] = 5; mapput(xs,1,1); mapput(xs,2,2); mapput(xs,3,3);  for(n=4,up_to, p = v[2-(n%2)]; q = nextprime(1+p); while(q%4 != p%4, q=nextprime(1+q)); v[2-(n%2)] = q; mapput(xs,primepi(q),n)); for(i=1, oo, if(!mapisdefined(xs, i, &u), return(Vec(lista)), listput(lista, prime(u)))); };
    v332806 = A332806list(up_to);
    A332806(n) = v332806[n];
    A332808(n) = { my(f=factor(n)); f[,1] = apply(A332806,apply(primepi,f[,1])); factorback(f); };
    A332816(n) = A156552(A332808(n));

Formula

a(n) = A156552(A332808(n)).
For n > 1, A070939(a(n)) = A332894(n).
For n >= 1: (Start)
A080791(a(n)) = A332899(n)-1.
Among many identities given in A156552 that apply here as well we have for example the following ones:
A000120(a(n)) = A001222(n).
A069010(a(n)) = A001221(n).
A106737(a(n)) = A000005(n).
(End)

A245195 a(n) = 2^A014081(n).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 2, 4, 1, 1, 1, 2, 2, 2, 4, 8, 1, 1, 1, 2, 1, 1, 2, 4, 2, 2, 2, 4, 4, 4, 8, 16, 1, 1, 1, 2, 1, 1, 2, 4, 1, 1, 1, 2, 2, 2, 4, 8, 2, 2, 2, 4, 2, 2, 4, 8, 4, 4, 4, 8, 8, 8, 16, 32, 1, 1, 1, 2, 1, 1, 2, 4, 1, 1, 1, 2, 2, 2, 4, 8, 1, 1, 1, 2, 1, 1, 2, 4, 2, 2, 2, 4, 4, 4, 8, 16, 2, 2, 2, 4, 2
Offset: 0

Views

Author

N. J. A. Sloane, Jul 24 2014

Keywords

Comments

This sequence provides a bridge between A245180 (and, presumably, A160239) and A014081.
See A245196 for more about this class of sequences.
Run length transform of A011782: 1,1,2,4,8,16,32,64,... - Chai Wah Wu, Oct 19 2016

Crossrefs

Programs

  • Maple
    # This Maple program applies more generally to a sequence where the recurrence across a block is as follows. The parameters to be set are the sequence G(0), G(1), G(2), ... (the final terms in the blocks), and the multiplier m.
    # For n in the range 2^(k-1) <= n < 2^k, write n = 2^k-2^r+j, with 0 <= r <= k-1 and 0 <= j < 2^(r-1), and j=0 if r=0. Then
    # (if j=0) a(2^k-2^r) = G(k-r-1),
    # (if j>0) a(2^k-2^r+j) = m*G(k-r-1)*a(j).
    # Since Maple gives its lists an offset of 1, it is necessary to add 1 to the arguments of G.
    # For the present sequence, G(n)=2^n and m=1.
    G:=[seq(2^n,n=0..30)];
    m:=1;
    f:=proc(n) option remember; global m,G; local k,r,j,np;
    if n <= 2 then G[0+1] elif n=3 then G[1+1]
    elif n=4 then G[0+1] elif n=5 then m*G[0+1] elif n=6 then G[1+1] elif n=7 then G[2+1]
    else
       k:=1+floor(log[2](n)); np:=2^k-n;
       if np=1 then r:=0; j:=0; else r:=1+floor(log[2](np-1)); j:=2^r-np; fi;
       if j=0 then G[k-r-1+1]; else m*G[k-r-1+1]*f(j); fi;
    fi;
    end;
    [seq(f(n),n=1..520)]:
    # Setting G(n) = A083424(n) and m = 8 gives A245180. Setting G(n) = 2^n and m = 2 gives A048896.
    A245195:=n->add(binomial(n,2*k)*binomial(n,k) mod 2, k=0..floor(n/2)): seq(A245195(n), n=0..200); # Wesley Ivan Hurt, Nov 01 2016
  • Mathematica
    Table[Sum[Mod[Binomial[n, 2 k] Binomial[n, k], 2], {k, 0, n}], {n, 0, 85}] (* Michael De Vlieger, Oct 21 2016 *)
  • PARI
    a(n) = 2^hammingweight(bitand(n, n>>1)) \\ Charles R Greathouse IV, Jul 16 2016
    
  • PARI
    a(n) = sum(k=0, n, binomial(n, 2*k)*binomial(n,k) % 2); \\ Michel Marcus, Oct 21 2016
    
  • Python
    from _future_ import division
    def A277560(n):
        return sum(int(not (~n & 2*k) | (~n & k)) for k in range(n//2+1))
    
  • Python
    def A245195(n): return 1<<(n&(n>>1)).bit_count() # Chai Wah Wu, Feb 11 2023

Formula

The entries may be arranged into blocks of sizes 1,2,4,8,...:
B_0: 1,
B_1: 1, 2,
B_2: 1, 1, 2, 4,
B_3: 1, 1, 1, 2, 2, 2, 4, 8,
B_4: 1, 1, 1, 2, 1, 1, 2, 4, 2, 2, 2, 4, 4, 4, 8, 16,
B_5: 1, 1, 1, 2, 1, 1, 2, 4, 1, 1, 1, 2, 2, 2, 4, 8, 2, 2, 2, 4, 2, 2, 4, 8, 4, 4, 4, 8, 8, 8, 16, 32,
...
Consider the block B_{k-1} containing terms a(2^(k-1)), a(2^(k-1)+1), ..., a(2^k-1). It is convenient to index the terms working backwards from the next, 2^k-th, term. For n in the range 2^(k-1) <= n < 2^k, write n = 2^k-2^r+j, with 0 <= r <= k-1 and 0 <= j < 2^(r-1), and j=0 if r=0. Then
(if j=0) a(2^k-2^r) = 2^(k-r-1),
(if j>0) a(2^k-2^r+j) = 2^(k-r-1)*a(j).
a(n) = A162510(A005940(1+n)). - Antti Karttunen, Oct 29 2016
From Robert Israel, Nov 02 2016: (Start)
a(2*k) = a(k).
a(4*k+1) = a(k).
a(4*k+3) = 2*a(2*k+1).
G.f. g(x) satisfies g(x) = x + (2*x+1)*g(x^2) - x*g(x^4). (End)
Also, a(n) = Sum_{k=0..floor(n/2)} ((binomial(n,2k)*binomial(n,k)) mod 2). - Chai Wah Wu, Oct 19 2016 and Robert Israel, Nov 04 2016. For proof, see the article by Chai Wah Wu, Sums of products of binomial coefficients mod 2 and run length transforms of sequences, arXiv:1610.06166, or the Robert Israel link.

Extensions

Changed offset to 0, merged former entry A277560 from Chai Wah Wu (Oct 19 2016) with this sequence. - N. J. A. Sloane, Nov 05 2016

A278161 Run length transform of A008619 (floor(n/2)+1).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 2, 2, 2, 3, 1, 1, 1, 2, 1, 1, 2, 2, 2, 2, 2, 4, 2, 2, 3, 3, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 2, 2, 2, 3, 2, 2, 2, 4, 2, 2, 4, 4, 2, 2, 2, 4, 3, 3, 3, 4, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 2, 2, 2, 3, 1, 1, 1, 2, 1, 1, 2, 2, 2, 2, 2, 4, 2, 2, 3, 3, 2, 2, 2, 4, 2, 2, 4, 4, 2, 2, 2, 4, 4, 4, 4, 6, 2, 2, 2, 4, 2, 2, 4, 4, 3
Offset: 0

Views

Author

Antti Karttunen, Nov 14 2016

Keywords

Examples

			n=111 is "1101111" in binary, which has two runs of 1-bits: the other has length 2, and the other has length 4, thus we take the product A008619(2)*A008619(4) = (floor(2/2)+1) * (floor(4/2)+1) = 2*3, which is the result, so a(111) = 6.
		

Crossrefs

Cf. A106737, A227349 for other run length transforms, and also A278222.

Programs

  • Mathematica
    f[n_] := Floor[n/2] + 1; Table[Times @@ (f[Length[#]]&) /@ Select[ Split[ IntegerDigits[n, 2]], #[[1]] == 1&], {n, 0, 120}] (* Jean-François Alcover, Jul 11 2017 *)
  • Python
    def A278161(n): return sum(int(not (~(n+3*k) & 6*k) | (~n & k)) for k in range(n+1)) # Chai Wah Wu, Sep 28 2021
  • Scheme
    (define (A278161 n) (fold-left (lambda (a r) (* a (A008619 r))) 1 (bisect (reverse (binexp->runcount1list n)) (- 1 (modulo n 2)))))
    (define (A008619 n) (+ 1 (/ (- n (modulo n 2)) 2)))
    ;; See A227349 for the required other functions.
    

Formula

a(n) = A046951(A005940(1+n)), a(A156552(n)) = A046951(n).
a(n) = Sum_{k=0..n} ((binomial(n+3k,6k)*binomial(n,k)) mod 2). - Chai Wah Wu, Nov 19 2019
Previous Showing 11-20 of 22 results. Next