cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 23 results. Next

A107870 Triangle, read by rows, where T(n,k) = C(n*(n-1)/2-k*(k-1)/2+n-k+2, n-k).

Original entry on oeis.org

1, 3, 1, 10, 4, 1, 56, 21, 5, 1, 495, 165, 36, 6, 1, 6188, 1820, 364, 55, 7, 1, 100947, 26334, 4845, 680, 78, 8, 1, 2035800, 475020, 80730, 10626, 1140, 105, 9, 1, 48903492, 10295472, 1623160, 201376, 20475, 1771, 136, 10, 1, 1362649145, 260932815
Offset: 0

Views

Author

Paul D. Hanna, Jun 04 2005

Keywords

Comments

Remarkably, the following matrix products are all equal to A107876: A107862^-1*A107867 = A107867^-1*A107870 = A107870^-1*A107873.

Examples

			Triangle begins:
1;
3,1;
10,4,1;
56,21,5,1;
495,165,36,6,1;
6188,1820,364,55,7,1;
100947,26334,4845,680,78,8,1;
2035800,475020,80730,10626,1140,105,9,1; ...
		

Crossrefs

Programs

  • PARI
    T(n,k)=binomial(n*(n-1)/2-k*(k-1)/2 +n-k+2,n-k)

A107873 Triangle, read by rows, where T(n,k) = binomial(n*(n-1)/2 - k*(k-1)/2 + n-k+3, n-k).

Original entry on oeis.org

1, 4, 1, 15, 5, 1, 84, 28, 6, 1, 715, 220, 45, 7, 1, 8568, 2380, 455, 66, 8, 1, 134596, 33649, 5985, 816, 91, 9, 1, 2629575, 593775, 98280, 12650, 1330, 120, 10, 1, 61523748, 12620256, 1947792, 237336, 23751, 2024, 153, 11, 1, 1677106640, 314457495, 45379620, 5245786, 501942, 40920, 2925, 190, 12, 1
Offset: 0

Views

Author

Paul D. Hanna, Jun 04 2005

Keywords

Comments

Remarkably, the following matrix products are all equal to A107876: A107862^-1*A107867 = A107867^-1*A107870 = A107870^-1*A107873.

Examples

			Triangle begins:
        1;
        4,      1;
       15,      5,     1;
       84,     28,     6,     1;
      715,    220,    45,     7,    1;
     8568,   2380,   455,    66,    8,   1;
   134596,  33649,  5985,   816,   91,   9,  1;
  2629575, 593775, 98280, 12650, 1330, 120, 10, 1; ...
		

Crossrefs

Programs

  • Magma
    [Binomial(3+Floor((n-k)*(n+k+1)/2), n-k): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 19 2022
    
  • Mathematica
    Flatten[Table[Binomial[(n(n-1))/2-(k(k-1))/2+n-k+3,n-k],{n,0,10},{k,0,n}]] (* Harvey P. Dale, Oct 03 2015 *)
  • PARI
    T(n,k)=binomial(n*(n-1)/2-k*(k-1)/2 +n-k+3,n-k)
    
  • Sage
    flatten([[binomial(3+(n-k)*(n+k+1)/2, n-k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 19 2022

Formula

From G. C. Greubel, Feb 19 2022: (Start)
T(n,k) = binomial(n*(n-1)/2 - k*(k-1)/2 + n-k+3, n-k).
T(n, 0) = A107874(n).
T(n, 1) = A107875(n). (End)

A126460 Triangle T, read by rows, where column k of matrix power T^( k(k+1)/2 ) equals left-shifted column (k-1) of T for k>=1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 3, 3, 1, 1, 21, 21, 6, 1, 1, 274, 274, 75, 10, 1, 1, 5806, 5806, 1565, 195, 15, 1, 1, 182766, 182766, 48950, 5940, 420, 21, 1, 1, 8034916, 8034916, 2145626, 257300, 17570, 798, 28, 1, 1, 471517614, 471517614, 125727238, 14989472, 1006880
Offset: 0

Views

Author

Paul D. Hanna, Dec 27 2006

Keywords

Comments

Amazingly, A126460 = A126445^-1*A126450 = A126450^-1*A126454 = A126454^-1*A126457; and also A126465 = A126450*A126445^-1 = A126454*A126450^-1 = A126457*A126454^-1. Also, column k equals unsigned column k of the matrix inverse of triangle P_k defined by P_k(m,j) = C( C(j+2,3) - C(k+2,3) + m-j, m-j) for m>=j>=0.

Examples

			Triangle T begins:
1;
1, 1;
1, 1, 1;
3, 3, 1, 1;
21, 21, 6, 1, 1;
274, 274, 75, 10, 1, 1;
5806, 5806, 1565, 195, 15, 1, 1;
182766, 182766, 48950, 5940, 420, 21, 1, 1;
8034916, 8034916, 2145626, 257300, 17570, 798, 28, 1, 1; ...
where column 1 of T^1 equals left-shifted column 0 of T.
Matrix cube T^3 begins:
1;
3, 1;
6, 3, (1);
22, 12, (3), 1;
163, 91, (21), 3, 1;
2167, 1219, (274), 33, 3, 1;
46248, 26091, (5806), 661, 48, 3, 1;
1460301, 824853, (182766), 20341, 1369, 66, 3, 1; ...
where column 2 of T^3 equals left-shifted column 1 of T.
Matrix power T^6 begins:
1;
6, 1;
21, 6, 1;
98, 33, 6, (1);
791, 281, 51, (6), 1;
10850, 3929, 710, (75), 6, 1;
234472, 85557, 15425, (1565), 105, 6, 1;
7444172, 2725402, 490806, (48950), 3080, 141, 6, 1; ...
where column 3 of T^6 equals left-shifted column 2 of T.
		

Crossrefs

Columns: A126461, A126462, A126463, A126464; A126465 (dual); A107876 (variant); subpartitions defined: A115728.

Programs

  • PARI
    {T(n,k)=abs((matrix(n+1,n+1,r,c, binomial((c-1)*c*(c+1)/3!-k*(k+1)*(k+2)/3!+r-c,r-c))^-1)[n+1,k+1])}
    for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))
    
  • PARI
    /* As Defined by Matrix Product A126460 = A126445^-1*A126450: */
    {T(n,k)=local(M=matrix(n+1,n+1,r,c,if(r>=c,binomial((r-1)*r*(r+1)/3!-(c-1)*c*(c+1)/3!,r-c))), N=matrix(n+1,n+1,r,c,if(r>=c,binomial((r-1)*r*(r+1)/3!-(c-1)*c*(c+1)/3!+1,r-c)))); (M^-1*N)[n+1,k+1]}
    for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))

Formula

G.f. of column k: 1/(1-x) = Sum_{n>=0} T(n+k,k)*x^n*(1-x)^p_k(n), so that column k equals the number of subpartitions of the partition p_k defined by: p_k(n) = (n^2 + (3*k+3)*n + (3*k^2+6*k-4))*n/6 for n>=0.

A107865 Matrix inverse of triangle A107862.

Original entry on oeis.org

1, -1, 1, -1, -2, 1, -7, -4, -3, 1, -77, -26, -9, -4, 1, -1145, -287, -67, -16, -5, 1, -21410, -4412, -798, -139, -25, -6, 1, -481683, -86004, -13029, -1830, -251, -36, -7, 1, -12655196, -2017658, -268368, -32191, -3667, -412, -49, -8, 1, -379998938, -55134458, -6630228, -705680, -69868, -6657, -631
Offset: 0

Views

Author

Paul D. Hanna, Jun 04 2005

Keywords

Comments

Matrix product with A107867 equals A107876.

Examples

			Triangle begins:
1;
-1,1;
-1,-2,1;
-7,-4,-3,1;
-77,-26,-9,-4,1;
-1145,-287,-67,-16,-5,1;
-21410,-4412,-798,-139,-25,-6,1;
-481683,-86004,-13029,-1830,-251,-36,-7,1; ...
		

Crossrefs

Cf. A107862, A107866 (column 0), A107867, A107870, A107876.

Programs

  • PARI
    {T(n,k)=(matrix(n+1,n+1,r,c,if(r>=c, binomial((r-1)*(r-2)/2-(c-1)*(c-2)/2+r-c,r-c)))^-1)[n+1,k+1]}

A122176 Triangle, read by rows, where T(n,k) = C( k*(k+1)/2 + n-k + 1, n-k) for n>=k>=0.

Original entry on oeis.org

1, 2, 1, 3, 3, 1, 4, 6, 5, 1, 5, 10, 15, 8, 1, 6, 15, 35, 36, 12, 1, 7, 21, 70, 120, 78, 17, 1, 8, 28, 126, 330, 364, 153, 23, 1, 9, 36, 210, 792, 1365, 969, 276, 30, 1, 10, 45, 330, 1716, 4368, 4845, 2300, 465, 38, 1, 11, 55, 495, 3432, 12376, 20349, 14950, 4960, 741, 47, 1
Offset: 0

Views

Author

Paul D. Hanna, Aug 25 2006

Keywords

Comments

Remarkably, column k of the matrix inverse (A121436) equals signed column k of matrix power: A107876^(k*(k+1)/2 + 2).

Examples

			Triangle begins:
1;
2, 1;
3, 3, 1;
4, 6, 5, 1;
5, 10, 15, 8, 1;
6, 15, 35, 36, 12, 1;
7, 21, 70, 120, 78, 17, 1;
8, 28, 126, 330, 364, 153, 23, 1;
9, 36, 210, 792, 1365, 969, 276, 30, 1; ...
		

Crossrefs

Cf. A121436 (inverse); variants: A098568, A122175, A122177.

Programs

  • Mathematica
    Flatten[Table[Binomial[(k(k+1))/2+n-k+1,n-k],{n,0,10},{k,0,n}]] (* Harvey P. Dale, Mar 18 2013 *)
  • PARI
    T(n,k)=if(n
    				

A122177 Triangle, read by rows, where T(n,k) = C( k*(k+1)/2 + n-k + 2, n-k) for n>=k>=0.

Original entry on oeis.org

1, 3, 1, 6, 4, 1, 10, 10, 6, 1, 15, 20, 21, 9, 1, 21, 35, 56, 45, 13, 1, 28, 56, 126, 165, 91, 18, 1, 36, 84, 252, 495, 455, 171, 24, 1, 45, 120, 462, 1287, 1820, 1140, 300, 31, 1, 55, 165, 792, 3003, 6188, 5985, 2600, 496, 39, 1, 66, 220, 1287, 6435, 18564, 26334
Offset: 0

Views

Author

Paul D. Hanna, Aug 25 2006

Keywords

Comments

Remarkably, column k of the matrix inverse (A121437) equals signed column k of matrix power: A107876^(k*(k+1)/2 + 3) for k>=0.

Examples

			Triangle begins:
1;
3, 1;
6, 4, 1;
10, 10, 6, 1;
15, 20, 21, 9, 1;
21, 35, 56, 45, 13, 1;
28, 56, 126, 165, 91, 18, 1;
36, 84, 252, 495, 455, 171, 24, 1;
45, 120, 462, 1287, 1820, 1140, 300, 31, 1; ...
		

Crossrefs

Cf. A121437 (inverse); variants: A098568, A122175, A122176.

Programs

  • Mathematica
    A122177[n_, k_] := Binomial[k*(k + 1)/2 + n - k + 2, n - k];
    Table[A122177[n, k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Jul 23 2024 *)
  • PARI
    T(n,k)=if(n
    				

A122175 Triangle, read by rows, where T(n,k) = C( k*(k+1)/2 + n-k, n-k) for n>=k>=0.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 4, 1, 1, 4, 10, 7, 1, 1, 5, 20, 28, 11, 1, 1, 6, 35, 84, 66, 16, 1, 1, 7, 56, 210, 286, 136, 22, 1, 1, 8, 84, 462, 1001, 816, 253, 29, 1, 1, 9, 120, 924, 3003, 3876, 2024, 435, 37, 1, 1, 10, 165, 1716, 8008, 15504, 12650, 4495, 703, 46, 1, 1, 11, 220
Offset: 0

Views

Author

Paul D. Hanna, Aug 25 2006

Keywords

Comments

Remarkably, column k of the matrix inverse (A121435) equals signed column k of matrix power: A107876^(k*(k+1)/2 + 1).

Examples

			Triangle begins:
1;
1, 1;
1, 2, 1;
1, 3, 4, 1;
1, 4, 10, 7, 1;
1, 5, 20, 28, 11, 1;
1, 6, 35, 84, 66, 16, 1;
1, 7, 56, 210, 286, 136, 22, 1;
1, 8, 84, 462, 1001, 816, 253, 29, 1; ...
		

Crossrefs

Cf. A121435 (inverse); variants: A098568, A122176, A122177.

Programs

  • Mathematica
    Table[Binomial[(k(k+1))/2+n-k,n-k],{n,0,20},{k,0,n}]//Flatten (* Harvey P. Dale, Mar 22 2016 *)
  • PARI
    T(n,k)=if(n
    				

A121436 Matrix inverse of triangle A122176, where A122176(n,k) = C( k*(k+1)/2 + n-k + 1, n-k) for n>=k>=0.

Original entry on oeis.org

1, -2, 1, 3, -3, 1, -7, 9, -5, 1, 26, -37, 25, -8, 1, -141, 210, -155, 60, -12, 1, 1034, -1575, 1215, -516, 126, -17, 1, -9693, 14943, -11806, 5270, -1426, 238, -23, 1, 111522, -173109, 138660, -63696, 18267, -3417, 414, -30, 1, -1528112, 2381814, -1923765, 899226, -267084, 53431, -7337, 675, -38, 1
Offset: 0

Views

Author

Paul D. Hanna, Aug 27 2006

Keywords

Examples

			Triangle begins:
1;
-2, 1;
3, -3, 1;
-7, 9, -5, 1;
26, -37, 25, -8, 1;
-141, 210, -155, 60, -12, 1;
1034, -1575, 1215, -516, 126, -17, 1;
-9693, 14943, -11806, 5270, -1426, 238, -23, 1;
111522, -173109, 138660, -63696, 18267, -3417, 414, -30, 1;
-1528112, 2381814, -1923765, 899226, -267084, 53431, -7337, 675, -38, 1; ...
		

Crossrefs

Cf. A098568, A107876; unsigned columns: A107881, A107886.

Programs

  • PARI
    /* Matrix Inverse of A122176 */
    {T(n,k)=local(M=matrix(n+1,n+1,r,c,if(r>=c,binomial((c-1)*(c-2)/2+r,r-c)))); return((M^-1)[n+1,k+1])}
    for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))
    
  • PARI
    /* Obtain by G.F. */
    {T(n,k)=polcoeff(1-sum(j=0, n-k-1, T(j+k,k)*x^j/(1-x+x*O(x^n))^(j*(j+1)/2+j*k+k*(k+1)/2+2)), n-k)}
    for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))

Formula

(1) T(n,k) = A121435(n-1,k) - A121435(n-1,k+1).
(2) T(n,k) = (-1)^(n-k)*[A107876^(k*(k+1)/2 + 2)](n,k);
i.e., column k equals signed column k of A107876^(k*(k+1)/2 + 2).
G.f.s for column k:
(3) 1 = Sum_{j>=0} T(j+k,k)*x^j/(1-x)^( j*(j+1)/2) + j*k + k*(k+1)/2 + 2);
(4) 1 = Sum_{j>=0} T(j+k,k)*x^j*(1+x)^( j*(j-1)/2) + j*k + k*(k+1)/2 + 2).

A141760 Triangle T, read by rows, where the g.f. of column k in matrix power T^m is given by: 1/(1-x)^m = Sum_{n>=k} [T^m](n,k) * x^(n-k)/(1+x)^{n(n-1)/2 - k(k-1)/2} for k>=0.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 6, 6, 3, 1, 1, 26, 26, 13, 4, 1, 1, 154, 154, 77, 23, 5, 1, 1, 1188, 1188, 594, 175, 36, 6, 1, 1, 11474, 11474, 5737, 1678, 336, 52, 7, 1, 1, 134432, 134432, 67216, 19579, 3863, 576, 71, 8, 1, 1, 1863168, 1863168, 931584, 270683, 52944, 7731
Offset: 0

Views

Author

Paul D. Hanna, Jul 18 2008

Keywords

Examples

			Triangle T begins:
1;
1, 1;
1, 1, 1;
2, 2, 1, 1;
6, 6, 3, 1, 1;
26, 26, 13, 4, 1, 1;
154, 154, 77, 23, 5, 1, 1;
1188, 1188, 594, 175, 36, 6, 1, 1;
11474, 11474, 5737, 1678, 336, 52, 7, 1, 1;
134432, 134432, 67216, 19579, 3863, 576, 71, 8, 1, 1;
1863168, 1863168, 931584, 270683, 52944, 7731, 911, 93, 9, 1, 1; ...
Matrix square, T^2, begins:
1;
2, 1;
3, 2, 1;
7, 5, 2, 1;
23, 17, 7, 2, 1;
105, 79, 33, 9, 2, 1;
641, 487, 205, 55, 11, 2, 1;
5034, 3846, 1626, 433, 83, 13, 2, 1; ...
where g.f. for column k of matrix square T^2 is:
1/(1-x)^2 = Sum_{n>=0} [T^2](n,k)*x^(n-k)/(1+x)^{n(n-1)/2 - k(k-1)/2}.
Matrix inverse, T^-1, begins:
1;
-1, 1;
0, -1, 1;
0, -1, -1, 1;
0, -2, -2, -1, 1;
0, -7, -7, -3, -1, 1;
0, -37, -37, -15, -4, -1, 1;
0, -268, -268, -106, -26, -5, -1, 1; ...
Let U = unsigned T^-1 with leftmost column dropped,
then U = A107876 where [U^k](n,k) = U(n,k-1) for n>=k>0.
The g.f. for column k of matrix inverse T^-1 is:
1-x = Sum_{n>=0} [T^-1](n,k) * x^(n-k)/(1+x)^{n(n-1)/2 - k(k-1)/2}.
MATRIX PRODUCTS:
T = P(1)^-1 * P(2) = P(2)^-1 * P(3) = P(m)^-1 * P(m+1);
P(1) begins:
1;
1, 1;
2, 2, 1;
8, 7, 3, 1;
57, 42, 16, 4, 1;
638, 386, 130, 29, 5, 1;
9949, 4944, 1471, 299, 46, 6, 1; ...
where [P(1)](n,k) = [x^(n-k)] 1/(1-x)*(1+x)^{n(n-1)/2-k(k-1)/2};
P(2) begins:
1;
2, 1;
5, 3, 1;
20, 12, 4, 1;
129, 72, 23, 5, 1;
1268, 630, 187, 38, 6, 1;
17548, 7599, 2063, 392, 57, 7, 1; ...
where [P(2)](n,k) = [x^(n-k)] 1/(1-x)^2*(1+x)^{n(n-1)/2-k(k-1)/2};
P(3) begins:
1;
3, 1;
9, 4, 1;
38, 18, 5, 1;
240, 111, 31, 6, 1;
2223, 955, 256, 48, 7, 1;
28672, 11124, 2794, 500, 69, 8, 1; ...
where [P(3)](n,k) = [x^(n-k)] 1/(1-x)^3*(1+x)^{n(n-1)/2-k(k-1)/2}.
		

Crossrefs

Cf. columns: A141761, A141762, A141763; A107876 (unsigned inverse).

Programs

  • Mathematica
    T[n_, k_, m_] := T[n, k, m] = If[nJean-François Alcover, Sep 19 2016, adapted from PARI *)
  • PARI
    T(n,k,m=1)=if(n
    				

Formula

Matrix powers satisfy: T^m = P(i)^-1 * P(m+i) for all m and i, where P(m) is given by:
[P(m)](n,k) = [x^(n-k)] 1/(1-x)^m * (1+x)^{n(n-1)/2 - k(k-1)/2} for n>=k>=0.
Let U = unsigned matrix inverse (T^-1) with leftmost column dropped, then U = A107876 where [U^k](n,k) = U(n,k-1) for n>=k>0.
G.f. for column k of T: 1/(1-x) = Sum_{n>=0} T(n,k)*x^(n-k)/(1+x)^{n(n-1)/2 - k(k-1)/2}.
T(n,k) = 1 - Sum_{j=k..n-1} T(j,k)*(-1)^(n-j)*C(j(j-1)/2 - k(k-1)/2 + n-j-1, n-j) for n>k with T(k,k)=1 for k>=0.
G.f. for column k of matrix power T^m:
1/(1-x)^m = Sum_{n>=0} [T^m](n,k)*x^(n-k)/(1+x)^{n*(n-1)/2 - k*(k-1)/2}.
[T^m](n,k) = C(m+n-1,n) - Sum_{j=k..n-1} [T^m](j,k)*(-1)^(n-j)*C(j(j-1)/2 - k(k-1)/2 + n-j-1,n-j) for n>k with [T^m](k,k)=1 for k>=0.

A121434 Matrix inverse of triangle A098568, where A098568(n, k) = C( (k+1)*(k+2)/2 + n-k-1, n-k) for n>=k>=0.

Original entry on oeis.org

1, 0, 1, 0, -1, 1, 0, 2, -3, 1, 0, -7, 12, -6, 1, 0, 37, -67, 39, -10, 1, 0, -268, 498, -311, 95, -15, 1, 0, 2496, -4701, 3045, -1015, 195, -21, 1, 0, -28612, 54298, -35901, 12560, -2675, 357, -28, 1, 0, 391189, -745734, 499157, -179717, 40635, -6097, 602, -36, 1, 0, -6230646, 11911221, -8034267, 2945010
Offset: 0

Views

Author

Paul D. Hanna, Aug 27 2006

Keywords

Examples

			Triangle begins:
  1;
  0, 1;
  0, -1, 1;
  0, 2, -3, 1;
  0, -7, 12, -6, 1;
  0, 37, -67, 39, -10, 1;
  0, -268, 498, -311, 95, -15, 1;
  0, 2496, -4701, 3045, -1015, 195, -21, 1;
  0, -28612, 54298, -35901, 12560, -2675, 357, -28, 1;
  0, 391189, -745734, 499157, -179717, 40635, -6097, 602, -36, 1; ...
		

Crossrefs

Cf. A098568, A107876; unsigned columns: A107877, A107887.

Programs

  • PARI
    /* Matrix Inverse of A098568 */ T(n,k)=local(M=matrix(n+1,n+1,r,c,if(r>=c,binomial((c-1)*(c-2)/2+r-2,r-c)))); return((M^-1)[n+1,k+1])
    
  • PARI
    /* Obtain by G.F. */ T(n,k)=polcoeff(1-sum(j=0, n-k-1, T(j+k,k)*x^j/(1-x+x*O(x^n))^(j*(j+1)/2+j*k+k*(k+1)/2)), n-k)

Formula

(1) T(n,k) = (-1)^(n-k)*[A107876^(k*(k+1)/2)](n,k); i.e., column k equals signed column k of A107876^(k*(k+1)/2).
G.f.s for column k:
(2) 1 = Sum_{j>=0} T(j+k,k)*x^j/(1-x)^( j*(j+1)/2) + j*k + k*(k+1)/2);
(3) 1 = Sum_{j>=0} T(j+k,k)*x^j*(1+x)^( j*(j-1)/2) + j*k + k*(k+1)/2).
Previous Showing 11-20 of 23 results. Next