cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A202656 Number of ways to place 5 nonattacking semi-queens on an n X n board.

Original entry on oeis.org

0, 0, 0, 0, 23, 1104, 16945, 141696, 810746, 3568352, 12948318, 40514560, 112720393, 285073712, 666143975, 1456288512, 3007576740, 5913372864, 11138305068, 20202100224, 35433809451, 60316600080, 99947225741, 161638967424, 255701773822, 396439174560, 603407582570
Offset: 1

Views

Author

Vaclav Kotesovec, Dec 22 2011

Keywords

Comments

Two semi-queens do not attack each other if they are in the same northwest-southeast diagonal.

Crossrefs

Programs

  • Mathematica
    Rest@ CoefficientList[Series[-x^5*(1899 x^9 + 16515 x^8 + 60512 x^7 + 116784 x^6 + 137646 x^5 + 98222 x^4 + 41688 x^3 + 9608 x^2 + 943 x + 23)/((x - 1)^11*(x + 1)^4), {x, 0, 27}], x] (* Michael De Vlieger, Aug 19 2019 *)

Formula

a(n) = n^10/120 - 2*n^9/9 + 95*n^8/36 - 183*n^7/10 + 14663*n^6/180 - 1201*n^5/5 + 16753*n^4/36 - 25364*n^3/45 + 68293*n^2/180 - 12781*n/120 + (n^3/2 - 6*n^2 + 39*n/2 - 61/4)*floor(n/2).
G.f.: -x^5*(1899*x^9 + 16515*x^8 + 60512*x^7 + 116784*x^6 + 137646*x^5 + 98222*x^4 + 41688*x^3 + 9608*x^2 + 943*x + 23)/((x-1)^11*(x+1)^4).

A172140 Number of ways to place 5 nonattacking zebras on an n X n board.

Original entry on oeis.org

0, 0, 126, 2032, 20502, 160696, 929880, 4117520, 15037036, 47368960, 132577826, 336828368, 789558314, 1729320120, 3574328936, 7027309888, 13226773092, 23959787480, 41954706558, 71276149776, 117848892710, 190142197976
Offset: 1

Views

Author

Vaclav Kotesovec, Jan 26 2010

Keywords

Comments

Zebra is a (fairy chess) leaper [2,3].

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[2x^2(100x^19 -648x^18 +1450x^17 -2126x^16 +10452x^15 - 43872x^14 +92798x^13 -100834x^12 +56460x^11 -61636x^10 +182288x^9 -303224x^8 + 275038x^7 -128982x^6 +21681x^5 +1933x^4 -13072x^3 -2540x^2 -323x-63)/(x-1)^11, {x, 0, 40}], x] (* Vincenzo Librandi, May 27 2013 *)
  • SageMath
    [0,0,126,2032,20502,160696,929880,4117520,15037036,47368960,132577826] + [(n^10 -90*n^8 +400*n^7 +2915*n^6 -26880*n^5 +2430*n^4 +609920*n^3 - 1517496*n^2 -4188480*n +16581120)/120 for n in (12..50)] # G. C. Greubel, Apr 19 2022

Formula

a(n) = (n^10 - 90*n^8 + 400*n^7 + 2915*n^6 - 26880*n^5 + 2430*n^4 + 609920*n^3 - 1517496*n^2 - 4188480*n + 16581120)/120, n >= 12.
For any fixed value of k > 1, a(n) = n^(2k) /k! - 9n^(2k - 2) /2/(k - 2)! + 20n^(2k - 3) /(k - 2)! + ...
G.f.: 2*x^3 * (100*x^19 -648*x^18 +1450*x^17 -2126*x^16 +10452*x^15 -43872*x^14 +92798*x^13 -100834*x^12 +56460*x^11 -61636*x^10 +182288*x^9 -303224*x^8 +275038*x^7 -128982*x^6 +21681*x^5 +1933*x^4 -13072*x^3 -2540*x^2 -323*x -63) / (x-1)^11. - Vaclav Kotesovec, Mar 25 2010

A178717 Degree of denominator of GF for number of ways to place k nonattacking queens on an n X n board.

Original entry on oeis.org

3, 5, 9, 17, 37, 81, 197, 477, 1197, 3077, 7989, 20649, 53885, 140601, 366917, 959685, 2511477, 6571681, 17202449, 45027677, 117871345, 308581637, 807852685, 2114904397, 5536838045, 14495554593, 37949503089, 99352690141, 260108204933
Offset: 1

Views

Author

Vaclav Kotesovec, Jun 07 2010

Keywords

Crossrefs

Programs

  • Mathematica
    Table[2*k + 1 + Sum[Sum[2*j*EulerPhi[i], {i, Fibonacci[k - j] + 1, Fibonacci[k - j + 1]}], {j, 1, k - 1}], {k, 1, 20}]

Formula

Explicit formula (Vaclav Kotesovec, May 31 2010), for k>1 : d(k) = 2*k+1+Sum[Sum[2*j*EulerPhi[i],{i,Fibonacci[k-j]+1,Fibonacci[k-j+1]}],{j,1,k-1}].
Asymptotic formula: d(k) ~ 6/(5*Pi^2)*((1+Sqrt[5])/2)^(2*k+1) or d(k) ~ 3*(1+Sqrt[5])/Pi^2*Fibonacci[k]^2.

A190397 Number of ways to place 5 nonattacking grasshoppers on a chessboard of size n x n.

Original entry on oeis.org

0, 0, 28, 1668, 29092, 252584, 1441634, 6222996, 22004086, 66972760, 181332416, 446905476, 1019470032, 2179712872, 4410518630, 8510498516, 15756224370, 28128603736, 48622240660, 81660504068, 133643402268, 213660267432
Offset: 1

Views

Author

Vaclav Kotesovec, May 10 2011

Keywords

Comments

The Grasshopper moves on the same lines as a queen, but must jump over a hurdle to land on the square immediately beyond.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[2 x^2 (8 x^12 - 60 x^11 + 75 x^10 + 24 x^9 + 441 x^8 - 1948 x^7 - 893 x^6 + 4122 x^5 - 8491 x^4 - 15988 x^3 - 6822 x^2 - 694 x - 14) / ((x - 1)^11 (x+1)), {x, 0, 50}], x] (* Vincenzo Librandi, Jun 02 2013 *)

Formula

a(n) = 1/120*(n^10 -10*n^8 -200*n^7 +1175*n^6 -1136*n^5 -740*n^4 -30520*n^3 +159624*n^2 -289024*n +179175 -135*(-1)^n), n>3.
G.f.: 2x^3*(8*x^12 -60*x^11 +75*x^10 +24*x^9 +441*x^8 -1948*x^7 -893*x^6 +4122*x^5 -8491*x^4 -15988*x^3 -6822*x^2 -694*x -14)/((x-1)^11*(x+1)).

A178967 Number of ways to place 5 nonattacking amazons (superqueens) on an n X n board.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 248, 7320, 82758, 562384, 2756122, 10771928, 35504296, 102677536, 267284836, 638673432, 1420555842, 2974232240, 5911536526, 11232560320, 20516606128, 36191817440, 61893239340, 102950022616, 167010533830, 264869097472, 411497661102, 627378473416, 940130628920, 1386570370640, 2015178519904, 2889176379864, 4090150245318, 5722507236712, 7918655437366, 10845295301648, 14710646654420, 19773136732920, 26351274869008, 34835414789584
Offset: 1

Views

Author

Vaclav Kotesovec, Jan 01 2011

Keywords

Comments

An amazon (superqueen) moves like a queen and a knight.

Crossrefs

Programs

  • Mathematica
    Flatten[{{0, 0, 0, 0, 0, 0, 248, 7320, 82758},FullSimplify[Table[1/120*n^10-5/18*n^9+253/72*n^8-689/45*n^7-34217/360*n^6+28391/18*n^5-6828569/810*n^4+29655659/1620*n^3+14328773/1296*n^2-779503661/6480*n+9261910451/64800 +(1/8*n^5-143/48*n^4+79/3*n^3-4711/48*n^2+5171/48*n+2549/32)*(-1)^n +1/2*(29*n-35)*Cos[Pi*n/2] +(2*n+15)*Sin[Pi*n/2] +1/81*(96*n^3-1328*n^2+4744*n-2248)*Cos[4*Pi*n/3] -1/243*(120*n^2-1496*n+5224)*Sqrt[3]*Sin[4*Pi*n/3] +8/25*((5-Sqrt[5])*n+2*Sqrt[5]-8)*Cos[4*Pi*n/5] +8/25*((5+Sqrt[5])*n-2*Sqrt[5]-8)*Cos[8*Pi*n/5] +8/25*Sqrt[50-22*Sqrt[5]]*Sin[4*Pi*n/5] -8/25*Sqrt[50+22*Sqrt[5]]*Sin[8*Pi*n/5], {n, 10, 20}]]}]

Formula

a(n) = 1/120*n^10-5/18*n^9+253/72*n^8-689/45*n^7-34217/360*n^6+28391/18*n^5-6828569/810*n^4+29655659/1620*n^3+14328773/1296*n^2-779503661/6480*n+9261910451/64800 +(1/8*n^5-143/48*n^4+79/3*n^3-4711/48*n^2+5171/48*n+2549/32)*(-1)^n +1/2*(29*n-35)*cos(Pi*n/2) +(2*n+15)*sin(Pi*n/2) +1/81*(96*n^3-1328*n^2+4744*n-2248)*cos(4*Pi*n/3) -1/243*(120*n^2-1496*n+5224)*sqrt(3)*sin(4*Pi*n/3) +8/25*((5-sqrt(5))*n+2*sqrt(5)-8)*cos(4*Pi*n/5) +8/25*((5+sqrt(5))*n-2*sqrt(5)-8)*cos(8*Pi*n/5) +8/25*sqrt(50-22*sqrt(5))*sin(4*Pi*n/5) -8/25*sqrt(50+22*sqrt(5))*sin(8*Pi*n/5), n>=10.
a(n) = n^10/120 - 5*n^9/18 + 253*n^8/72 - 689*n^7/45 - 34307*n^6/360 + 57001*n^5/36 - 55000657*n^4/6480 + 60118543*n^3/3240 + 34387307*n^2/3240 - 155720509*n/1296 + 142960 + (n^5/2 - 143*n^4/12 + 316*n^3/3 - 4711*n^2/12 + 5123*n/12 + 2309/8)*floor[n/2] + (32*n^3/9 - 1328*n^2/27 + 4744*n/27 - 2248/27)*floor[n/3] + (16*n^3/9 - 724*n^2/27 + 1040*n/9 - 3736/27)*floor[(n+1)/3] + (33*n - 5)*floor[n/4] + (25*n - 65)*floor[(n+1)/4] + (32*n/5 - 48/5)*floor[n/5] + (24*n/5 - 64/5)*floor[(n+1)/5] + (16*n/5 - 56/5)*floor[(n+2)/5] + (8*n/5 - 32/5)*floor[(n+3)/5], n>=10.
G.f.: (2*x^7*(-124 - 3784*x - 44667*x^2 - 310723*x^3 - 1509124*x^4 - 5621180*x^5 - 16954312*x^6 - 42976662*x^7 - 93896850*x^8 - 180088868*x^9 - 307206501*x^10 - 470650261*x^11 - 652017897*x^12 - 820670989*x^13 - 941074901*x^14 - 984212615*x^15 - 938015444*x^16 - 812413066*x^17 - 635893628*x^18 - 445615046*x^19 - 275100707*x^20 - 145295581*x^21 - 61597137*x^22 - 17181649*x^23 + 704005*x^24 + 4589289*x^25 + 3324134*x^26 + 1424132*x^27 + 316332*x^28 - 58210*x^29 - 91844*x^30 - 47684*x^31 - 15863*x^32 - 3119*x^33 + 490*x^34 + 982*x^35 + 632*x^36 + 260*x^37 + 126*x^38 + 54*x^39))/((-1+x)^11*(1+x)^6*(1+x^2)^2*(1+x+x^2)^4*(1+x+x^2+x^3+x^4)^2).
Recurrence: a(n) = a(n-37) + a(n-36) - 3a(n-35) - 7a(n-34) - 3a(n-33) + 11a(n-32) + 21a(n-31) + 13a(n-30) - 13a(n-29) - 41a(n-28) - 44a(n-27) - 8a(n-26) + 49a(n-25) + 81a(n-24) + 57a(n-23) - 15a(n-22) - 88a(n-21) - 106a(n-20) - 48a(n-19) + 48a(n-18) + 106a(n-17) + 88a(n-16) + 15a(n-15) - 57a(n-14) - 81a(n-13) - 49a(n-12) + 8a(n-11) + 44a(n-10) + 41a(n-9) + 13a(n-8) - 13a(n-7) - 21a(n-6) - 11a(n-5) + 3a(n-4) + 7a(n-3) + 3a(n-2) - a(n-1), n>=47.

A252593 Number of ways to place 8 nonattacking queens on an n X n board.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 92, 13848, 636524, 14803480, 207667564, 2008758532, 14752426528, 87154016752, 432539436508, 1858901487620
Offset: 1

Views

Author

Antal Pinter, Dec 18 2014

Keywords

Comments

Conjectured recurrence order is 477 (see "Non-attacking chess pieces", p. 19). - Vaclav Kotesovec, Dec 19 2014

Crossrefs

Formula

a(n) = n^16/40320 - n^15/432 + 221*n^14/2160 + O(n^13). - Vaclav Kotesovec, Dec 19 2014

Extensions

a(16) from Vaclav Kotesovec, Dec 19 2014
a(17) from Vaclav Kotesovec, Dec 20 2014

A269133 Number of ways to place m nonattacking queens on an m X n board, 1 <= m <= n (triangular array).

Original entry on oeis.org

1, 2, 0, 3, 2, 0, 4, 6, 4, 2, 5, 12, 14, 12, 10, 6, 20, 36, 46, 40, 4, 7, 30, 76, 140, 164, 94, 40, 8, 42, 140, 344, 568, 550, 312, 92, 9, 56, 234, 732, 1614, 2292, 2038, 1066, 352, 10, 72, 364, 1400, 3916, 7552, 9632, 7828, 4040, 724, 11, 90, 536, 2468, 8492, 21362, 37248, 44148, 34774, 15116, 2680, 12, 110, 756, 4080, 16852, 52856, 120104, 195270, 222720, 160964, 68264, 14200
Offset: 1

Views

Author

Marko Riedel, Feb 19 2016

Keywords

Examples

			The triangular array begins:
   n\m  1   2   3    4     5     6      7      8      9     10    11    12
   1    1
   2    2   0
   3    3   2   0
   4    4   6   4    2
   5    5  12  14   12    10
   6    6  20  36   46    40     4
   7    7  30  76  140   164    94     40
   8    8  42 140  344   568   550    312     92
   9    9  56 234  732  1614  2292   2038   1066    352
  10   10  72 364 1400  3916  7552   9632   7828   4040    724
  11   11  90 536 2468  8492 21362  37248  44148  34774  15116  2680
  12   12 110 756 4080 16852 52856 120104 195270 222720 160964 68264 14200
...
		

Crossrefs

Cf. A000027 (m=1), A002378 (m=2), A061989 (m=3), A061990 (m=4), A061991 (m=5), A061992 (m=6), A061993 (m=7), A172449 (m=8).
Cf. A036464 (2Q), A047659 (3Q), A061994 (4Q), A108792 (5Q), A176186 (6Q).
Cf. A006717, A051906, A319284 (backtrack trees).

Programs

  • PARI
    {A269133(m, n, B=[], t=if(#B, setminus(n, Set(concat(B+t=[-#B..-1], B-t))), n=[1..n]))= if(#B < m-1, vecsum([A269133(m, setminus(n, [t]), concat(B,t)) | t<-t]), #t)} \\ M. F. Hasler, Jan 11 2022
Previous Showing 11-17 of 17 results.