cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 91-100 of 264 results. Next

A325878 Number of maximal subsets of {1..n} such that every orderless pair of distinct elements has a different sum.

Original entry on oeis.org

1, 1, 1, 1, 4, 5, 8, 22, 40, 56, 78, 124, 222, 390, 616, 892, 1220, 1620, 2182, 3042, 4392, 6364, 9054, 12608, 16980, 22244, 28482, 36208, 45864, 58692, 75804, 98440, 128694, 168250, 218558, 281210, 357594, 449402, 560034, 693332, 853546, 1050118, 1293458, 1596144, 1975394
Offset: 0

Views

Author

Gus Wiseman, Jun 02 2019

Keywords

Examples

			The a(1) = 1 through a(6) = 8 subsets:
  {1}  {1,2}  {1,2,3}  {1,2,3}  {1,2,4}    {1,2,3,5}
                       {1,2,4}  {2,3,4}    {1,2,3,6}
                       {1,3,4}  {2,4,5}    {1,2,4,6}
                       {2,3,4}  {1,2,3,5}  {1,3,4,5}
                                {1,3,4,5}  {1,3,5,6}
                                           {1,4,5,6}
                                           {2,3,4,6}
                                           {2,4,5,6}
		

Crossrefs

The subset case is A196723.
The integer partition case is A325857.
The strict integer partition case is A325877.
Heinz numbers of the counterexamples are given by A325991.

Programs

  • Mathematica
    fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&/@y)];
    Table[Length[fasmax[Select[Subsets[Range[n]],UnsameQ@@Plus@@@Subsets[Union[#],{2}]&]]],{n,0,10}]
  • PARI
    a(n)={
       my(ismaxl(b,w)=for(k=1, n, if(!bittest(b,k) && !bitand(w,b< n, ismaxl(b,w),
             my(s=self()(k+1, r, b, w));
             if(!bitand(w,b<Andrew Howroyd, Mar 23 2025

Extensions

a(21) onwards from Andrew Howroyd, Mar 23 2025

A325879 Number of maximal subsets of {1..n} such that every ordered pair of distinct elements has a different difference.

Original entry on oeis.org

1, 1, 1, 3, 3, 6, 14, 20, 24, 36, 64, 110, 176, 238, 294, 370, 504, 736, 1086, 1592, 2240, 2982, 3788, 4700, 5814, 7322, 9396, 12336, 16552, 22192, 29310, 38046, 48368, 60078, 73722, 89416, 108208, 131310, 160624, 198002, 247408, 310410, 390924, 490818, 613344, 758518
Offset: 0

Views

Author

Gus Wiseman, Jun 02 2019

Keywords

Comments

Also the number of maximal subsets of {1..n} such that every orderless pair of (not necessarily distinct) elements has a different sum.

Examples

			The a(0) = 1 through a(7) = 20 subsets:
  {}  {1}  {1,2}  {1,2}  {2,3}    {1,2,4}  {1,2,4}  {1,2,4}
                  {1,3}  {1,2,4}  {1,2,5}  {1,2,5}  {1,2,6}
                  {2,3}  {1,3,4}  {1,3,4}  {1,2,6}  {1,3,4}
                                  {1,4,5}  {1,3,4}  {1,4,5}
                                  {2,3,5}  {1,3,6}  {1,4,6}
                                  {2,4,5}  {1,4,5}  {1,5,6}
                                           {1,4,6}  {2,3,5}
                                           {1,5,6}  {2,3,6}
                                           {2,3,5}  {2,3,7}
                                           {2,3,6}  {2,4,5}
                                           {2,4,5}  {2,4,7}
                                           {2,5,6}  {2,5,6}
                                           {3,4,6}  {2,6,7}
                                           {3,5,6}  {3,4,6}
                                                    {3,4,7}
                                                    {3,5,6}
                                                    {4,5,7}
                                                    {4,6,7}
                                                    {1,2,5,7}
                                                    {1,3,6,7}
		

Crossrefs

The subset case is A143823.
The integer partition case is A325858.
The strict integer partition case is A325876.
Heinz numbers of the counterexamples are given by A325992.

Programs

  • Mathematica
    fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&/@y)];
    Table[Length[fasmax[Select[Subsets[Range[n]],UnsameQ@@Subtract@@@Subsets[Union[#],{2}]&]]],{n,0,10}]
  • PARI
    a(n)={
      my(ismaxl(b,w)=for(k=1, n, if(!bittest(b,k) && !bitand(w,bitor(b,1< n, ismaxl(b,w),
             my(s=self()(k+1, b,w));
             b+=1<Andrew Howroyd, Mar 27 2025

Extensions

a(21)-a(45) from Fausto A. C. Cariboni, Feb 08 2022

A335516 Number of normal patterns contiguously matched by the prime indices of n in increasing or decreasing order, counting multiplicity.

Original entry on oeis.org

1, 2, 2, 3, 2, 3, 2, 4, 3, 3, 2, 5, 2, 3, 3, 5, 2, 5, 2, 5, 3, 3, 2, 7, 3, 3, 4, 5, 2, 4, 2, 6, 3, 3, 3, 7, 2, 3, 3, 7, 2, 4, 2, 5, 5, 3, 2, 9, 3, 5, 3, 5, 2, 7, 3, 7, 3, 3, 2, 7, 2, 3, 5, 7, 3, 4, 2, 5, 3, 4, 2, 10, 2, 3, 5, 5, 3, 4, 2, 9, 5, 3, 2, 7, 3, 3, 3
Offset: 1

Views

Author

Gus Wiseman, Jun 26 2020

Keywords

Comments

First differs from A181796 at a(180) = 9, A181796(180) = 10.
First differs from A335549 at a(90) = 7, A335549(90) = 8.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
We define a (normal) pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217. A sequence S is said to contiguously match a pattern P if there is a contiguous subsequence of S whose parts have the same relative order as P. For example, (3,1,1,3) contiguously matches (1,1,2) and (2,1,1) but not (2,1,2), (1,2,1), (1,2,2), or (2,2,1).

Examples

			The a(n) patterns for n = 2, 30, 12, 60, 120, 540, 1500:
  ()   ()     ()     ()      ()       ()        ()
  (1)  (1)    (1)    (1)     (1)      (1)       (1)
       (12)   (11)   (11)    (11)     (11)      (11)
       (123)  (12)   (12)    (12)     (12)      (12)
              (112)  (112)   (111)    (111)     (111)
                     (123)   (112)    (112)     (112)
                     (1123)  (123)    (122)     (122)
                             (1112)   (1112)    (123)
                             (1123)   (1122)    (1123)
                             (11123)  (1222)    (1222)
                                      (11222)   (1233)
                                      (12223)   (11233)
                                      (112223)  (12333)
                                                (112333)
		

Crossrefs

The version for standard compositions is A335458.
The not necessarily contiguous version is A335549.
Patterns are counted by A000670 and ranked by A333217.
A number's prime indices are given in the rows of A112798.
Contiguous subsequences of standard compositions are A124771.
Contiguous sub-partitions of prime indices are counted by A335519.
Minimal avoided patterns of prime indices are counted by A335550.
Patterns contiguously matched by partitions are counted by A335838.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    mstype[q_]:=q/.Table[Union[q][[i]]->i,{i,Length[Union[q]]}];
    Table[Length[Union[mstype/@ReplaceList[primeMS[n],{_,s___,_}:>{s}]]],{n,100}]

A364531 Positive integers with no prime index equal to the sum of prime indices of any nonprime divisor.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 68, 69, 71, 73, 74, 75, 76, 77
Offset: 1

Views

Author

Gus Wiseman, Aug 01 2023

Keywords

Comments

First differs from A299702 (knapsack) in having 525: {2,3,3,4}.
First differs from A325778 in lacking 462: {1,2,4,5}.
These are the Heinz numbers of partitions whose parts are disjoint from their own non-singleton subset-sums.

Crossrefs

Partitions of this type are counted by A237667, strict A364349.
The binary version is A364462, complement A364461.
The complement is A364532, counted by A237668.
A000005 counts divisors, nonprime A033273, composite A055212.
A299701 counts distinct subset-sums of prime indices.
A299702 ranks knapsack partitions, counted by A108917, complement A299729.
A363260 counts partitions disjoint from differences, complement A364467.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Intersection[prix[#],Total/@Subsets[prix[#],{2,Length[prix[#]]}]]=={}&]

A364532 Positive integers with a prime index equal to the sum of prime indices of some nonprime divisor. Heinz numbers of a variation of sum-full partitions.

Original entry on oeis.org

12, 24, 30, 36, 40, 48, 60, 63, 70, 72, 80, 84, 90, 96, 108, 112, 120, 126, 132, 140, 144, 150, 154, 156, 160, 165, 168, 180, 189, 192, 198, 200, 204, 210, 216, 220, 224, 228, 240, 252, 264, 270, 273, 276, 280, 286, 288, 300, 308, 312, 315, 320, 324, 325, 330
Offset: 1

Views

Author

Gus Wiseman, Aug 01 2023

Keywords

Comments

First differs from A299729 (non-knapsack) in lacking 525: {2,3,3,4}.
First differs from A325777 in having 462: {1,2,4,5} and lacking 675:{2,2,2,3,3}.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
These are the Heinz numbers of partitions containing the sum of some non-singleton submultiset.

Examples

			The terms together with their prime indices begin:
  12: {1,1,2}
  24: {1,1,1,2}
  30: {1,2,3}
  36: {1,1,2,2}
  40: {1,1,1,3}
  48: {1,1,1,1,2}
  60: {1,1,2,3}
  63: {2,2,4}
  70: {1,3,4}
  72: {1,1,1,2,2}
  80: {1,1,1,1,3}
  84: {1,1,2,4}
  90: {1,2,2,3}
  96: {1,1,1,1,1,2}
		

Crossrefs

Partitions not of this type are counted by A237667, strict A364349.
Partitions of this type are counted by A237668, strict A364272.
The binary complement is A364461, re-usable A364347 (counted by A364345).
The binary version is A364462, re-usable A364348 (counted by A363225).
The complement is A364531.
Subsets of this type are counted by A364534, complement A151897.
A000005 counts divisors, nonprime A033273, composite A055212.
A001222 counts prime indices.
A108917 counts knapsack partitions, strict A275972, for subsets A325864.
A112798 lists prime indices, sum A056239.
A299701 counts distinct subset-sums of prime indices.
A299702 ranks knapsack partitions, complement A299729.

Programs

  • Mathematica
    Select[Range[100],Intersection[prix[#],Total/@Subsets[prix[#],{2,Length[prix[#]]}]]!={}&]

A367094 Irregular triangle read by rows with trailing zeros removed where T(n,k) is the number of integer partitions of 2n whose number of submultisets summing to n is k.

Original entry on oeis.org

0, 1, 1, 1, 2, 2, 1, 5, 3, 3, 8, 4, 9, 1, 17, 6, 16, 1, 2, 24, 7, 33, 4, 9, 46, 11, 52, 3, 18, 1, 4, 64, 12, 91, 6, 38, 3, 15, 1, 1, 107, 17, 138, 9, 68, 2, 28, 2, 12, 0, 2, 147, 19, 219, 12, 117, 6, 56, 3, 34, 2, 9, 0, 3
Offset: 0

Views

Author

Gus Wiseman, Nov 07 2023

Keywords

Examples

			The partition (3,2,2,1) has two submultisets summing to 4, namely {2,2} and {1,3}, so it is counted under T(4,2).
The partition (2,2,1,1,1,1) has three submultisets summing to 4, namely {1,1,1,1}, {1,1,2}, and {2,2}, so it is counted under T(4,3).
Triangle begins:
    0   1
    1   1
    2   2   1
    5   3   3
    8   4   9   1
   17   6  16   1   2
   24   7  33   4   9
   46  11  52   3  18   1   4
   64  12  91   6  38   3  15   1   1
  107  17 138   9  68   2  28   2  12   0   2
  147  19 219  12 117   6  56   3  34   2   9   0   3
Row n = 4 counts the following partitions:
  (8)     (44)        (431)      (221111)
  (71)    (3311)      (422)
  (62)    (2222)      (4211)
  (611)   (11111111)  (41111)
  (53)                (3221)
  (521)               (32111)
  (5111)              (311111)
  (332)               (22211)
                      (2111111)
		

Crossrefs

Row sums w/o the first column are A002219, ranks A357976, strict A237258.
Column k = 0 is A006827.
Row sums are A058696.
Column k = 1 is A108917.
The corresponding rank statistic is A357879 (without empty rows).
A000041 counts integer partitions, strict A000009.
A182616 counts partitions of 2n that do not contain n, ranks A366321.
A182616 counts partitions of 2n with at least one odd part, ranks A366530.
A276024 counts positive subset-sums of partitions, strict A284640.
A304792 counts subset-sums of partitions, rank statistic A299701.
A365543 counts partitions of n with a submultiset summing to k.

Programs

  • Mathematica
    t=Table[Length[Select[IntegerPartitions[2n], Count[Total/@Union[Subsets[#]],n]==k&]], {n,0,5}, {k,0,1+PartitionsP[n]}];
    Table[NestWhile[Most,t[[i]],Last[#]==0&], {i,Length[t]}]

Formula

T(n,1) = A108917(n).

A316402 Number of strict non-knapsack integer partitions of n, meaning not every subset has a different sum.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 1, 0, 3, 1, 4, 3, 8, 6, 12, 10, 20, 16, 29, 25, 44, 39, 61, 60, 91, 84, 125, 126, 180, 179, 242, 247, 336, 347, 444, 472, 606, 628, 796, 844, 1053, 1109, 1363, 1452, 1779, 1885, 2272, 2431, 2931, 3104, 3706, 3972, 4711, 5042, 5909, 6334
Offset: 1

Views

Author

Gus Wiseman, Jul 01 2018

Keywords

Examples

			The a(12) = 4 partitions are (6,4,2), (6,5,1), (5,4,2,1), (6,3,2,1).
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&!UnsameQ@@Total/@Union[Subsets[#]]&]],{n,30}]

Formula

a(n) = A000009(n) - A275972(n).

A325859 Number of maximal subsets of {1..n} such that every orderless pair of distinct elements has a different product.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 4, 4, 11, 11, 28, 28, 60, 60, 140, 241, 299, 299, 572, 572, 971
Offset: 0

Views

Author

Gus Wiseman, May 31 2019

Keywords

Examples

			The a(1) = 1 through a(9) = 11 subsets:
  {1}  {12}  {123}  {1234}  {12345}  {2356}   {23567}   {123457}  {235678}
                                     {12345}  {123457}  {123578}  {1234579}
                                     {12456}  {124567}  {124567}  {1235789}
                                     {13456}  {134567}  {125678}  {1245679}
                                                        {134567}  {1256789}
                                                        {134578}  {1345679}
                                                        {135678}  {1345789}
                                                        {145678}  {1356789}
                                                        {234578}  {1456789}
                                                        {235678}  {2345789}
                                                        {245678}  {2456789}
		

Crossrefs

The subset case is A196724.
The maximal case is A325859.
The integer partition case is A325856.
The strict integer partition case is A325855.
Heinz numbers of the counterexamples are given by A325993.

Programs

  • Mathematica
    fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&/@y)];
    Table[Length[fasmax[Select[Subsets[Range[n]],UnsameQ@@Times@@@Subsets[#,{2}]&]]],{n,0,15}]

A301854 Number of positive special sums of integer partitions of n.

Original entry on oeis.org

1, 3, 7, 13, 25, 40, 67, 100, 158, 220, 336, 452, 649, 862, 1228, 1553, 2155, 2738, 3674, 4612, 6124, 7497, 9857, 12118, 15524, 18821, 24152, 28863, 36549, 44002, 54576, 65125, 80943, 95470, 117991, 139382, 169389, 199144, 242925, 283353, 342139, 400701, 479001
Offset: 1

Views

Author

Gus Wiseman, Mar 27 2018

Keywords

Comments

A positive special sum of an integer partition y is a number n > 0 such that exactly one submultiset of y sums to n.

Examples

			The a(4) = 13 special positive subset-sums:
1<=(1111), 2<=(1111), 3<=(1111), 4<=(1111),
1<=(211),  3<=(211),  4<=(211),
1<=(31),   3<=(31),   4<=(31),
2<=(22),   4<=(22),
4<=(4).
		

Crossrefs

Programs

  • Mathematica
    uqsubs[y_]:=Join@@Select[GatherBy[Union[Rest[Subsets[y]]],Total],Length[#]===1&];
    Table[Total[Length/@uqsubs/@IntegerPartitions[n]],{n,25}]
  • Python
    from collections import Counter
    from sympy.utilities.iterables import partitions, multiset_combinations
    def A301854(n): return sum(sum(1 for r in Counter(sum(q) for l in range(1,len(p)+1) for q in multiset_combinations(p,l)).values() if r==1) for p in (tuple(Counter(x).elements()) for x in partitions(n))) # Chai Wah Wu, Sep 26 2023

Extensions

a(21)-a(35) from Alois P. Heinz, Apr 08 2018
a(36)-a(43) from Chai Wah Wu, Sep 26 2023

A335479 Numbers k such that the k-th composition in standard order (A066099) matches the pattern (1,2,3).

Original entry on oeis.org

52, 104, 105, 108, 116, 180, 200, 208, 209, 210, 211, 212, 216, 217, 220, 232, 233, 236, 244, 308, 328, 360, 361, 364, 372, 400, 401, 404, 408, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 428, 432, 433, 434, 435, 436, 440, 441, 444, 456, 464, 465, 466
Offset: 1

Views

Author

Gus Wiseman, Jun 18 2020

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217. A sequence S is said to match a pattern P if there is a not necessarily contiguous subsequence of S whose parts have the same relative order as P. For example, (3,1,1,3) matches (1,1,2), (2,1,1), and (2,1,2), but avoids (1,2,1), (1,2,2), and (2,2,1).

Examples

			The sequence of terms together with the corresponding compositions begins:
   52: (1,2,3)
  104: (1,2,4)
  105: (1,2,3,1)
  108: (1,2,1,3)
  116: (1,1,2,3)
  180: (2,1,2,3)
  200: (1,3,4)
  208: (1,2,5)
  209: (1,2,4,1)
  210: (1,2,3,2)
  211: (1,2,3,1,1)
  212: (1,2,2,3)
  216: (1,2,1,4)
  217: (1,2,1,3,1)
  220: (1,2,1,1,3)
		

Crossrefs

The version counting permutations is A056986.
Patterns matching this pattern are counted by A335515 (by length).
Permutations of prime indices matching this pattern are counted by A335520.
These compositions are counted by A335514 (by sum).
Constant patterns are counted by A000005 and ranked by A272919.
Permutations are counted by A000142 and ranked by A333218.
Patterns are counted by A000670 and ranked by A333217.
Non-unimodal compositions are counted by A115981 and ranked by A335373.
Combinatory separations are counted by A269134.
Patterns matched by standard compositions are counted by A335454.
Minimal patterns avoided by a standard composition are counted by A335465.
Other permutations:
- A335479 (1,2,3)
- A335480 (1,3,2)
- A335481 (2,1,3)
- A335482 (2,3,1)
- A335483 (3,1,2)
- A335484 (3,2,1)

Programs

  • Mathematica
    stc[n_]:=Reverse[Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]];
    Select[Range[0,100],MatchQ[stc[#],{_,x_,_,y_,_,z_,_}/;x
    				
Previous Showing 91-100 of 264 results. Next