cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 71-74 of 74 results.

A358727 Matula-Goebel numbers of rooted trees with greater number of leaves (width) than node-height.

Original entry on oeis.org

8, 16, 24, 28, 32, 36, 38, 42, 48, 49, 53, 54, 56, 57, 63, 64, 72, 76, 80, 81, 84, 96, 98, 104, 106, 108, 112, 114, 120, 126, 128, 131, 133, 136, 140, 144, 147, 148, 152, 156, 159, 160, 162, 168, 171, 172, 178, 180, 182, 184, 189, 190, 192, 196, 200, 204, 208
Offset: 1

Views

Author

Gus Wiseman, Dec 01 2022

Keywords

Comments

The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of the branches of its root, which gives a bijective correspondence between positive integers and unlabeled rooted trees.
Node-height is the number of nodes in the longest path from root to leaf.

Examples

			The terms together with their corresponding rooted trees begin:
   8: (ooo)
  16: (oooo)
  24: (ooo(o))
  28: (oo(oo))
  32: (ooooo)
  36: (oo(o)(o))
  38: (o(ooo))
  42: (o(o)(oo))
  48: (oooo(o))
  49: ((oo)(oo))
  53: ((oooo))
  54: (o(o)(o)(o))
  56: (ooo(oo))
  57: ((o)(ooo))
  63: ((o)(o)(oo))
  64: (oooooo)
  72: (ooo(o)(o))
  76: (oo(ooo))
		

Crossrefs

Positions of negative terms in A358726.
These trees are counted by A358728.
Differences: A358580, A358724, A358726, A358729.
A000081 counts rooted trees, ordered A000108.
A034781 counts rooted trees by nodes and height, ordered A080936.
A055277 counts rooted trees by nodes and leaves, ordered A001263.

Programs

  • Mathematica
    MGTree[n_]:=If[n==1,{},MGTree/@Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[1000],Depth[MGTree[#]]-1
    				

A333267 If n = Product (p_j^k_j) then a(n) = Product (a(pi(p_j)) * k_j), where pi = A000720.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 2, 3, 2, 1, 1, 2, 1, 2, 1, 4, 2, 2, 3, 2, 2, 1, 2, 3, 2, 1, 3, 4, 1, 1, 1, 5, 1, 2, 2, 4, 2, 3, 1, 3, 1, 2, 2, 2, 2, 2, 1, 4, 4, 2, 2, 2, 4, 3, 1, 6, 3, 1, 2, 2, 2, 1, 4, 6, 1, 1, 3, 4, 2, 2, 2, 6, 2, 2, 2, 6, 2, 1, 1, 4, 4, 1, 2, 4, 2, 2, 1, 3, 3, 2, 2, 4, 1, 1, 3, 5, 2, 4, 2, 4
Offset: 1

Views

Author

Ilya Gutkovskiy, Mar 13 2020

Keywords

Examples

			a(36) = a(2^2 * 3^2) = a(prime(1)^2 * prime(2)^2) = a(1) * 2 * a(2) * 2 = 4.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember;
          mul(a(numtheory[pi](i[1]))*i[2], i=ifactors(n)[2])
        end:
    seq(a(n), n=1..120);  # Alois P. Heinz, Mar 13 2020
  • Mathematica
    a[1] = 1; a[n_] := a[n] = Times @@ (a[PrimePi[#[[1]]]] #[[2]] & /@ FactorInteger[n]); Table[a[n], {n, 1, 100}]

Formula

a(n) = A005361(n) * Product_{p|n, p prime} a(pi(p)).
a(n) = a(prime(n)).
a(p^k) = k * a(p), where p is prime.
a(A002110(n)) = Product_{k=1..n} a(k).

A358723 Number of n-node rooted trees of edge-height equal to their number of leaves.

Original entry on oeis.org

0, 1, 0, 2, 1, 6, 7, 26, 43, 135, 276, 755, 1769, 4648, 11406, 29762, 75284, 195566, 503165, 1310705, 3402317, 8892807, 23231037, 60906456, 159786040, 420144405, 1105673058, 2914252306, 7688019511, 20304253421, 53667498236, 141976081288, 375858854594, 995728192169
Offset: 1

Views

Author

Gus Wiseman, Nov 29 2022

Keywords

Comments

Edge-height (A109082) is the number of edges in the longest path from root to leaf.

Examples

			The a(1) = 0 through a(7) = 7 trees:
  .  (o)  .  ((oo))  ((o)(o))  (((ooo)))  (((o))(oo))
             (o(o))            ((o(oo)))  (((o)(oo)))
                               ((oo(o)))  ((o)((oo)))
                               (o((oo)))  ((o)(o(o)))
                               (o(o(o)))  ((o(o)(o)))
                               (oo((o)))  (o((o)(o)))
                                          (o(o)((o)))
		

Crossrefs

For internals instead of leaves: A011782, ranked by A209638.
For internals instead of edge-height: A185650 aerated, ranked by A358578.
For node-height: A358589 (square trees), ranked by A358577, ordered A358590.
A000081 counts rooted trees, ordered A000108.
A034781 counts rooted trees by nodes and height, ordered A080936.
A055277 counts rooted trees by nodes and leaves, ordered A001263.
A358575 counts rooted trees by nodes and internals, ordered A090181.

Programs

  • Mathematica
    art[n_]:=If[n==1,{{}},Join@@Table[Select[Tuples[art/@c],OrderedQ],{c,Join@@Permutations/@IntegerPartitions[n-1]}]];
    Table[Length[Select[art[n],Count[#,{},{-2}]==Depth[#]-2&]],{n,1,10}]
  • PARI
    \\ Needs R(n,f) defined in A358589.
    seq(n) = {Vec(R(n, (h,p)->polcoef(p,h-1,y)), -n)} \\ Andrew Howroyd, Jan 01 2023

Extensions

Terms a(19) and beyond from Andrew Howroyd, Jan 01 2023

A336194 Table read by antidiagonals upwards: T(n,k) = (n - 1)*k^3 - 1, with n > 1 and k > 0.

Original entry on oeis.org

0, 1, 7, 2, 15, 26, 3, 23, 53, 63, 4, 31, 80, 127, 124, 5, 39, 107, 191, 249, 215, 6, 47, 134, 255, 374, 431, 342, 7, 55, 161, 319, 499, 647, 685, 511, 8, 63, 188, 383, 624, 863, 1028, 1023, 728, 9, 71, 215, 447, 749, 1079, 1371, 1535, 1457, 999, 10, 79, 242, 511, 874, 1295, 1714, 2047, 2186, 1999, 1330
Offset: 2

Views

Author

Stefano Spezia, Jul 11 2020

Keywords

Comments

T(n, k) is a sharp upper bound of the tree width of a graph G that does not contain a clique on n vertices nor a minimal separator of size larger than k (see Theorem 2.1 in Pilipczuk et al.).
All the square matrices starting at top left of the table T are singular except for the 2 X 2 submatrix: det([0, 7; 1, 15]) = -7.

Examples

			The table starts at row n = 2 and column k = 1 as:
0   7   26   63  124   215 ...
1  15   53  127  249   431 ...
2  23   80  191  374   647 ...
3  31  107  255  499   863 ...
4  39  134  319  624  1079 ...
5  47  161  383  749  1295 ...
...
		

Crossrefs

Cf. A000578, A001093, A001477 (k = 1), A004771 (k = 2), A068601 (n = 2), A085537, A109129, A123865 (main diagonal), A325543, A325612.

Programs

  • Mathematica
    T[n_,k_]:=(n-1)*k^3-1; Flatten[Table[T[n+1-k,k],{n,2,12},{k,1,n-1}]]
  • PARI
    T(n, k) = (n - 1)*k^3 - 1

Formula

O.g.f.: x^2*y*(y*(7 - 2*y + y^2) + x*(1 - y)^3)/((1 - x)^2*(1 - y)^4).
E.g.f.: -1 + exp(x) - x + exp(y)*x + exp(y)*(1 + y + 3*y^2 + y^3) + exp(x + y)*(-1 +(-1 + x)*y*(1 + 3*y + y^2)).
T(n, k) = n*A000578(k) - A001093(k).
T(n, n) = A085537(n) - 1 for n > 1.
T(n, k) = T(n+1, 1)*T(2, k) + T(n, 1).
Previous Showing 71-74 of 74 results.