cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 50 results. Next

A247453 T(n,k) = binomial(n,k)*A000111(n-k)*(-1)^(n-k), 0 <= k <= n.

Original entry on oeis.org

1, -1, 1, 1, -2, 1, -2, 3, -3, 1, 5, -8, 6, -4, 1, -16, 25, -20, 10, -5, 1, 61, -96, 75, -40, 15, -6, 1, -272, 427, -336, 175, -70, 21, -7, 1, 1385, -2176, 1708, -896, 350, -112, 28, -8, 1, -7936, 12465, -9792, 5124, -2016, 630, -168, 36, -9, 1, 50521
Offset: 0

Views

Author

Reinhard Zumkeller, Sep 17 2014

Keywords

Comments

Matrix inverse of A109449, the unsigned version of this sequence. More precisely, consider both of these triangles as the nonzero lower left of an infinite square array / matrix, filled with zeros above/right of the diagonal. Then these are mutually inverse of each other; in matrix notation: A247453 . A109449 = A109449 . A247453 = Identity matrix. In more conventional notation, for any m,n >= 0, Sum_{k=0..n} A247453(n,k)*A109449(k,m) = Sum_{k=0..n} A109449(n,k)*A247453(k,m) = delta(m,n), the Kronecker delta (= 1 if m = n, 0 else). - M. F. Hasler, Oct 06 2017

Examples

			.   0:      1
.   1:     -1      1
.   2:      1     -2      1
.   3:     -2      3     -3      1
.   4:      5     -8      6     -4      1
.   5:    -16     25    -20     10     -5     1
.   6:     61    -96     75    -40     15    -6     1
.   7:   -272    427   -336    175    -70    21    -7    1
.   8:   1385  -2176   1708   -896    350  -112    28   -8   1
.   9:  -7936  12465  -9792   5124  -2016   630  -168   36  -9   1
.  10:  50521 -79360  62325 -32640  12810 -4032  1050 -240  45 -10  1  .
		

Crossrefs

Programs

  • Haskell
    a247453 n k = a247453_tabl !! n !! k
    a247453_row n = a247453_tabl !! n
    a247453_tabl = zipWith (zipWith (*)) a109449_tabl a097807_tabl
    
  • Mathematica
    a111[n_] := n! SeriesCoefficient[(1+Sin[x])/Cos[x], {x, 0, n}];
    T[n_, k_] := (-1)^(n-k) Binomial[n, k] a111[n-k];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Aug 03 2018 *)
  • PARI
    A247453(n,k)=(-1)^(n-k)*binomial(n,k)*if(n>k, 2*abs(polylog(k-n, I)), 1) \\ M. F. Hasler, Oct 06 2017

Formula

T(n,k) = (-1)^(n-k) * A007318(n,k) * A000111(n-k), k = 0..n;
T(n,k) = (-1)^(n-k) * A109449(n,k); A109449(n,k) = abs(T(n,k));
abs(sum of row n) = A062162(n);
Sum_{k=0..n} T(n,k)*A000111(k) = 0^n.

Extensions

Edited by M. F. Hasler, Oct 06 2017

A000718 Boustrophedon transform of triangular numbers 1,1,3,6,10,...

Original entry on oeis.org

1, 2, 6, 20, 65, 226, 883, 3947, 20089, 115036, 732171, 5126901, 39165917, 324138010, 2888934623, 27587288507, 281001801969, 3041152133848, 34849036364659, 421526126267265, 5367037330561365, 71752003756908550
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Haskell
    a000718 n = sum $ zipWith (*) (a109449_row n) (1 : tail a000217_list)
    -- Reinhard Zumkeller, Nov 04 2013
    
  • Mathematica
    t[n_, 0] := If[n == 0, 1, n*(n+1)/2]; t[n_, k_] := t[n, k] = t[n, k-1] + t[n-1, n-k]; a[n_] := t[n, n]; Array[a, 30, 0] (* Jean-François Alcover, Feb 12 2016 *)
  • Python
    from itertools import accumulate, count, islice
    def A000718_gen(): # generator of terms
        yield 1
        blist, c = (1,), 1
        for i in count(2):
            yield (blist := tuple(accumulate(reversed(blist),initial=c)))[-1]
            c += i
    A000718_list = list(islice(A000718_gen(),30)) # Chai Wah Wu, Jun 11 2022

Formula

E.g.f.: (sec(x) + tan(x))*(exp(x)*(x + 1/2*x^2) + 1). - Sergei N. Gladkovskii, Oct 30 2014
a(n) ~ n! * (8 + exp(Pi/2)*Pi*(4+Pi)) * 2^(n-1) / Pi^(n+1). - Vaclav Kotesovec, Jun 12 2015

A000732 Boustrophedon transform of 1 & primes: 1,2,3,5,7,...

Original entry on oeis.org

1, 3, 8, 22, 66, 222, 862, 3838, 19542, 111894, 712282, 4987672, 38102844, 315339898, 2810523166, 26838510154, 273374835624, 2958608945772, 33903161435148, 410085034127000, 5221364826476796, 69804505809732988
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Haskell
    a000732 n = sum $ zipWith (*) (a109449_row n) a008578_list
    
  • Mathematica
    t[n_, 0] := If[n==0, 1, Prime[n]]; t[n_, k_] := t[n, k] = t[n, k-1] + t[n-1, n-k]; a[n_] := t[n, n]; Array[a, 30, 0] (* Jean-François Alcover, Feb 12 2016 *)
  • Python
    from itertools import accumulate, count, islice
    from sympy import prime
    def A000732_gen(): # generator of terms
        yield 1
        blist = (1,)
        for i in count(1):
            yield (blist := tuple(accumulate(reversed(blist),initial=prime(i))))[-1]
    A000732_list = list(islice(A000732_gen(),40)) # Chai Wah Wu, Jun 12 2022

Formula

a(n) = Sum_{k=0..n} A109449(n,k)*A008578(k+1). - Reinhard Zumkeller, Nov 04 2013
E.g.f.: (sec(x) + tan(x))*(1 + Sum_{k>=1} prime(k)*x^k/k!). - Ilya Gutkovskiy, Apr 23 2019

A000734 Boustrophedon transform of 1,1,2,4,8,16,32,...

Original entry on oeis.org

1, 2, 5, 15, 49, 177, 715, 3255, 16689, 95777, 609875, 4270695, 32624329, 269995377, 2406363835, 22979029335, 234062319969, 2533147494977, 29027730898595, 351112918079175, 4470508510495609, 59766296291090577
Offset: 0

Views

Author

Keywords

Comments

Binomial transform of A062272. - Paul Barry, Jan 21 2005

Crossrefs

Programs

  • Haskell
    a000734 n = sum $ zipWith (*) (a109449_row n) (1 : a000079_list)
    -- Reinhard Zumkeller, Nov 04 2013
    
  • Mathematica
    CoefficientList[Series[(1+E^(2*x))*(Sec[x]+Tan[x])/2, {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Oct 07 2013 *)
    t[n_, 0] := If[n == 0, 1, 2^(n-1)]; t[n_, k_] := t[n, k] = t[n, k-1] + t[n - 1, n-k]; a[n_] := t[n, n]; Array[a, 30, 0] (* Jean-François Alcover, Feb 12 2016 *)
  • Python
    from itertools import count, accumulate, islice
    def A000734_gen(): # generator of terms
        yield 1
        blist, m = (1,), 1
        while True:
            yield (blist := tuple(accumulate(reversed(blist),initial=m)))[-1]
            m *= 2
    A000734_list = list(islice(A000734_gen(),40)) # Chai Wah Wu, Jun 12 2022
  • Sage
    # Algorithm of L. Seidel (1877)
    def A000734_list(n) :
        A = {-1:0, 0:1}; R = []
        k = 0; e = 1; Bm = 1
        for i in range(n) :
            Am = Bm
            A[k + e] = 0
            e = -e
            for j in (0..i) :
                Am += A[k]
                A[k] = Am
                k += e
            Bm += Bm
            R.append(A[e*i//2]/2)
        return R
    A000734_list(22) # Peter Luschny, Jun 02 2012
    

Formula

E.g.f.: (1 + exp(2*x))*(sec(x) + tan(x))/2. - Paul Barry, Jan 21 2005
a(n) ~ n! * (1 + exp(Pi)) * (2/Pi)^(n+1). - Vaclav Kotesovec, Oct 07 2013

A000751 Boustrophedon transform of partition numbers.

Original entry on oeis.org

1, 2, 5, 14, 42, 143, 555, 2485, 12649, 72463, 461207, 3229622, 24671899, 204185616, 1819837153, 17378165240, 177012514388, 1915724368181, 21952583954117, 265533531724484, 3380877926676504, 45199008472762756
Offset: 0

Views

Author

Keywords

Examples

			The array begins:
                   1
               1  ->   2
           5  <-   4  <-   2
       3  ->   8  ->  12  ->  14
  42  <-  39  <-  31  <-  19  <-   5
- _John Cerkan_, Jan 26 2017
		

Crossrefs

Programs

  • Haskell
    a000751 n = sum $ zipWith (*) (a109449_row n) a000041_list
    -- Reinhard Zumkeller, Nov 03 2013
    
  • Mathematica
    t[n_, 0] := PartitionsP[n]; t[n_, k_] := t[n, k] = t[n, k - 1] + t[n - 1, n - k]; a[n_] := t[n, n]; Array[a, 30, 0] (* Jean-François Alcover, Feb 12 2016 *)
  • Python
    from itertools import accumulate, count, islice
    from sympy import npartitions
    def A000751_gen(): # generator of terms
        blist = tuple()
        for i in count(0):
            yield (blist := tuple(accumulate(reversed(blist),initial=npartitions(i))))[-1]
    A000751_list = list(islice(A000751_gen(),40)) # Chai Wah Wu, Jun 12 2022

Formula

a(n) = Sum_{k=0..n} A109449(n,k)*A000041(k). - Reinhard Zumkeller, Nov 03 2013

A000754 Boustrophedon transform of odd numbers.

Original entry on oeis.org

1, 4, 12, 33, 96, 317, 1218, 5425, 27608, 158129, 1006574, 7048657, 53847420, 445643681, 3971876930, 37928628529, 386337833232, 4181155148673, 47912508680086, 579538956964241, 7378919177090244, 98648882783190305
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A005408.

Programs

  • Haskell
    a000754 n = sum $ zipWith (*) (a109449_row n) [1, 3 ..]
    -- Reinhard Zumkeller, Nov 02 2013
    
  • Mathematica
    CoefficientList[Series[(Sec[x]+Tan[x])*E^x*(2*x+1), {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Oct 30 2014 after Sergei N. Gladkovskii *)
    t[n_, 0] := 2n + 1; t[n_, k_] := t[n, k] = t[n, k - 1] + t[n - 1, n - k]; a[n_] := t[n, n]; Array[a, 30, 0] (* Jean-François Alcover, Feb 12 2016 *)
  • Python
    from itertools import accumulate, count, islice
    def A000754_gen(): # generator of terms
        blist = tuple()
        for i in count(1,2):
            yield (blist := tuple(accumulate(reversed(blist),initial=i)))[-1]
    A000754_list = list(islice(A000754_gen(),40)) # Chai Wah Wu, Jun 12 2022

Formula

From Reinhard Zumkeller, Nov 02 2013: (Start)
a(n) = Sum_{k=0..n} A116666(n+1,k)*A000111(n-k).
a(n) = Sum_{k=0..n} A109449(n,k)*(2*k + 1). (End)
E.g.f.: (sec(x) + tan(x))*exp(x)*(2*x + 1). - Sergei N. Gladkovskii, Oct 30 2014
a(n) ~ n! * (Pi+1) * exp(Pi/2) * 2^(n+2) / Pi^(n+1). - Vaclav Kotesovec, Oct 30 2014

A029885 Boustrophedon transform of 1 followed by Thue-Morse sequence A001285.

Original entry on oeis.org

1, 2, 5, 13, 34, 108, 415, 1841, 9381, 53733, 342086, 2395481, 18300250, 151453434, 1349856656, 12890177378, 131298281746, 1420980348324, 16283235530691, 196958363484995, 2507751773736087, 33526171616091612
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Haskell
    a029885 n = sum $ zipWith (*) (a109449_row n) (1 : map fromIntegral a001285_list)
    -- Reinhard Zumkeller, Nov 04 2013
  • Mathematica
    tm[n_] := Mod[Sum[Mod[Binomial[n, k], 2], {k, 0, n}], 3];
    T[n_, k_] := (n!/k!) SeriesCoefficient[(1 + Sin[x])/Cos[x], {x, 0, n - k}];
    a[n_] := Sum[T[n, k] If[k == 0, 1, tm[k - 1]], {k, 0, n}];
    Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Jul 02 2019 *)

Extensions

Definition corrected by Reinhard Zumkeller, Nov 04 2013

A230950 Boustrophedon transform of Thue-Morse sequence A010060.

Original entry on oeis.org

0, 1, 3, 6, 15, 50, 186, 834, 4243, 24318, 154780, 1083952, 8280624, 68531308, 610796150, 5832677415, 59411150931, 642979374958, 7368000716808, 89121684577460, 1134732527849730, 15170256449030866, 212469074496520610, 3111026318662704255, 47532980801984327584
Offset: 0

Views

Author

Reinhard Zumkeller, Nov 03 2013

Keywords

Crossrefs

Programs

  • Haskell
    a230950 n = sum $ zipWith (*) (a109449_row n) $ map fromIntegral a010060_list
    
  • Mathematica
    T[n_, k_] := (n!/k!) SeriesCoefficient[(1 + Sin[x])/Cos[x], {x, 0, n - k}];
    a[n_] := Sum[T[n, k] ThueMorse[k], {k, 0, n}];
    Table[a[n], {n, 0, 24}] (* Jean-François Alcover, Jul 02 2019 *)
  • Python
    from itertools import count, islice, accumulate
    def A230950_gen(): # generator of terms
        blist = tuple()
        for i in count(0):
            yield (blist := tuple(accumulate(reversed(blist), initial=i.bit_count()&1)))[-1]
    A230950_list = list(islice(A230950_gen(),30)) # Chai Wah Wu, Apr 17 2023

Formula

a(n) = Sum_{k=0..n} A109449(n,k)*A010060(k).

A230951 Boustrophedon transform of Thue-Morse sequence A010059.

Original entry on oeis.org

1, 1, 1, 3, 9, 27, 108, 475, 2421, 13859, 88254, 617957, 4720980, 39070669, 348225424, 3325303894, 33871280413, 366573108019, 4200618576106, 50809739256049, 646929695900154, 8648812936664311, 121132117170628444, 1773647319453218254, 27099334868109293640
Offset: 0

Views

Author

Reinhard Zumkeller, Nov 03 2013

Keywords

Crossrefs

Programs

  • Haskell
    a230951 n = sum $ zipWith (*) (a109449_row n) $ map fromIntegral a010059_list
    
  • Python
    from itertools import count, islice, accumulate
    def A230951_gen(): # generator of terms
        blist = tuple()
        for i in count(0):
            yield (blist := tuple(accumulate(reversed(blist), initial=i.bit_count()&1^1)))[-1]
    A230951_list = list(islice(A230951_gen(),30)) # Chai Wah Wu, Apr 17 2023

Formula

a(n) = Sum_{k=0..n} A109449(n,k)*A010059(k).

A000697 Boustrophedon transform of 1, 1, 4, 9, 16, ...

Original entry on oeis.org

1, 2, 7, 26, 89, 316, 1243, 5564, 28321, 162160, 1032051, 7226636, 55206161, 456886912, 4072080587, 38885496092, 396084390849, 4286637591872, 49121248360291, 594159600856332, 7565074996215025, 101137602761945440
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Haskell
    a000697 n = sum $ zipWith (*) (a109449_row n) (1 : tail a000290_list)
    -- Reinhard Zumkeller, Nov 04 2013
    
  • Mathematica
    t[n_, 0] := If[n==0, 1, n^2]; t[n_, k_] := t[n, k] = t[n, k-1]+t[n-1, n-k]; a[n_] := t[n, n]; Array[a, 30, 0] (* Jean-François Alcover, Feb 12 2016 *)
  • Python
    from itertools import accumulate, count, islice
    def A000697_gen(): # generator of terms
        yield 1
        blist, m = (1,), 1
        for i in count(1):
            yield (blist := tuple(accumulate(reversed(blist),initial=m)))[-1]
            m += 2*i+1
    A000697_list = list(islice(A000697_gen(),40)) # Chai Wah Wu, Jun 12 2022

Formula

E.g.f.: (1 + exp(x)*x*(1 + x))*(sec(x) + tan(x)). - Sergei N. Gladkovskii, Oct 29 2014
a(n) ~ n! * (4 + exp(Pi/2)*Pi*(2 + Pi)) * 2^n / Pi^(n+1). - Vaclav Kotesovec, Jun 12 2015
Previous Showing 21-30 of 50 results. Next